Budde Thomas, Coulon Philippe, Pawlowski Matthias, Meuth Patrick, Kanyshkova Tatyana, Japes Ansgar, Meuth Sven G, Pape Hans-Christian
Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, 48149, Münster, Germany.
Pflugers Arch. 2008 Sep;456(6):1061-73. doi: 10.1007/s00424-008-0482-9. Epub 2008 May 14.
By combining electrophysiological, immunohistochemical, and computer modeling techniques, we examined the effects of halothane on the standing outward current (I (SO)) and the hyperpolarization-activated current (I (h)) in rat thalamocortical relay (TC) neurons of the dorsal lateral geniculate nucleus (dLGN). Hyperpolarizing voltage steps elicited an instantaneous current component (I (i)) followed by a slower time-dependent current that represented I (h). Halothane reduced I (h) by shifting the voltage dependency of activation toward more negative potentials and by reducing the maximal conductance. Moreover, halothane augmented I (i) and I (SO). During the blockade of I (h) through Cs+, the current-voltage relationship of the halothane-sensitive current closely resembled the properties of a current through members of the TWIK-related acid-sensitive K+ (TASK) channel family (I (TASK)). Computer simulations in a single-compartment TC neuron model demonstrated that the modulation of I (h) and I (TASK) is sufficient to explain the halothane-induced hyperpolarization of the membrane potential observed in current clamp recordings. Immunohistochemical staining revealed protein expression of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel proteins HCN1, HCN2, and HCN4. Together with the dual effect of halothane on I (h) properties, these results suggest that I (h) in TC neurons critically depends on HCN1/HCN2 heterodimers. It is concluded that the reciprocal modulation of I (h) and I (TASK) is an important mechanism of halothane action in the thalamus.
通过结合电生理、免疫组织化学和计算机建模技术,我们研究了氟烷对大鼠背外侧膝状核(dLGN)丘脑皮质中继(TC)神经元的外向持续电流(I(SO))和超极化激活电流(I(h))的影响。超极化电压阶跃引发一个瞬时电流成分(I(i)),随后是一个较慢的时间依赖性电流,代表I(h)。氟烷通过将激活的电压依赖性向更负的电位移动并降低最大电导来降低I(h)。此外,氟烷增强了I(i)和I(SO)。在通过Cs+阻断I(h)期间,氟烷敏感电流的电流-电压关系与通过TWIK相关酸敏感钾(TASK)通道家族成员的电流特性(I(TASK))非常相似。在单室TC神经元模型中的计算机模拟表明,I(h)和I(TASK)的调节足以解释在电流钳记录中观察到的氟烷诱导的膜电位超极化。免疫组织化学染色显示了超极化激活环核苷酸门控(HCN)通道蛋白HCN1、HCN2和HCN4的蛋白表达。连同氟烷对I(h)特性的双重作用,这些结果表明TC神经元中的I(h)关键取决于HCN1/HCN2异二聚体。得出的结论是,I(h)和I(TASK)的相互调节是氟烷在丘脑中作用的重要机制。