Cerina Manuela, Szkudlarek Hanna J, Coulon Philippe, Meuth Patrick, Kanyshkova Tatyana, Nguyen Xuan Vinh, Göbel Kerstin, Seidenbecher Thomas, Meuth Sven G, Pape Hans-Christian, Budde Thomas
Institute of Physiology I, Westfälische Wilhelms-University, Münster, Germany.
Department of Neurology, Westfälische Wilhelms-University, Münster, Germany.
Br J Pharmacol. 2015 Jun;172(12):3126-40. doi: 10.1111/bph.13113. Epub 2015 Apr 10.
The existence of functional K(v)7 channels in thalamocortical (TC) relay neurons and the effects of the K(+)-current termed M-current (I(M)) on thalamic signal processing have long been debated. Immunocytochemical evidence suggests their presence in this brain region. Therefore, we aimed to verify their existence, pharmacological properties and function in regulating activity in neurons of the ventrobasal thalamus (VB).
Characterization of K(v)7 channels was performed by combining in vitro, in vivo and in silico techniques with a pharmacological approach. Retigabine (30 μM) and XE991 (20 μM), a specific K(v)7 channel enhancer and blocker, respectively, were applied in acute brain slices during electrophysiological recordings. The effects of intrathalamic injection of retigabine (3 mM, 300 nL) and/or XE991 (2 mM, 300 nL) were investigated in freely moving animals during hot-plate tests by recording behaviour and neuronal activity.
K(v)7.2 and K(v)7.3 subunits were found to be abundantly expressed in TC neurons of mouse VB. A slow K(+)-current with properties of IM was activated by retigabine and inhibited by XE991. K(v)7 channel activation evoked membrane hyperpolarization, a reduction in tonic action potential firing, and increased burst firing in vitro and in computational models. Single-unit recordings and pharmacological intervention demonstrated a specific burst-firing increase upon I(M) activation in vivo. A K(v)7 channel-mediated increase in pain threshold was associated with fewer VB units responding to noxious stimuli, and increased burst firing in responsive neurons.
K(v)7 channel enhancement alters somatosensory activity and may reflect an anti-nociceptive mechanism during acute pain processing.
丘脑皮质(TC)中继神经元中功能性K(v)7通道的存在以及被称为M电流(I(M))的钾电流对丘脑信号处理的影响长期以来一直存在争议。免疫细胞化学证据表明它们存在于该脑区。因此,我们旨在验证它们在腹侧基底丘脑(VB)神经元中的存在、药理学特性及其调节活性的功能。
通过将体外、体内和计算机模拟技术与药理学方法相结合来对K(v)7通道进行表征。在电生理记录期间,分别将特异性K(v)7通道增强剂瑞替加滨(30μM)和阻滞剂XE991(20μM)应用于急性脑片。在热板试验期间,通过记录行为和神经元活动,研究了向自由活动动物丘脑内注射瑞替加滨(3 mM,300 nL)和/或XE991(2 mM,300 nL)的效果。
发现K(v)7.2和K(v)7.3亚基在小鼠VB的TC神经元中大量表达。具有I(M)特性的缓慢钾电流被瑞替加滨激活并被XE991抑制。在体外和计算模型中,K(v)7通道激活引起膜超极化、紧张性动作电位发放减少以及爆发性发放增加。单单位记录和药理学干预表明,在体内I(M)激活后会出现特定的爆发性发放增加。K(v)7通道介导的痛阈升高与对有害刺激作出反应的VB单位减少以及反应性神经元中爆发性发放增加有关。
K(v)7通道增强会改变体感活动,可能反映了急性疼痛处理过程中的一种抗伤害感受机制。