Suppr超能文献

工程化慢病毒载体靶向转导的可视化

Visualization of targeted transduction by engineered lentiviral vectors.

作者信息

Joo K-I, Wang P

机构信息

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Gene Ther. 2008 Oct;15(20):1384-96. doi: 10.1038/gt.2008.87. Epub 2008 May 15.

Abstract

We have reported a method to target lentiviral vectors to specific cell types. This method requires the incorporation of two distinct molecules on the viral vector surface: one is an antibody that renders the targeting specificity for the engineered vector, and the other is a fusogenic protein that allows the engineered vector to enter the target cell. However, the molecular mechanism that controls the targeted infection needs to be defined. In this report, we tracked the individual lentiviral particles by labeling the virus with the GFP-Vpr fusion protein. We were able to visualize the surface-displayed proteins on a single virion as well as antibody-directed targeting to a desired cell type. We also demonstrated the dynamics of virus fusion with endosomes and monitored endosome-associated transport of viruses in target cells. Our results suggest that the fusion between the engineered lentivirus and endosomes takes place at the early endosome level, and that the release of the viral core into the cytosol at the completion of the virus-endosome fusion is correlated with the endosome maturation process. This imaging study sheds some light on the infection mechanism of the engineered lentivirus and can be beneficial to the design of more efficient gene delivery vectors.

摘要

我们已经报道了一种将慢病毒载体靶向特定细胞类型的方法。该方法需要在病毒载体表面掺入两种不同的分子:一种是赋予工程化载体靶向特异性的抗体,另一种是使工程化载体能够进入靶细胞的融合蛋白。然而,控制靶向感染的分子机制仍有待确定。在本报告中,我们通过用绿色荧光蛋白-Vpr融合蛋白标记病毒来追踪单个慢病毒颗粒。我们能够可视化单个病毒粒子表面展示的蛋白质以及抗体介导的对所需细胞类型的靶向作用。我们还展示了病毒与内体融合的动力学,并监测了靶细胞中与内体相关的病毒转运。我们的结果表明,工程化慢病毒与内体之间的融合发生在早期内体水平,并且在病毒-内体融合完成时病毒核心释放到细胞质中与内体成熟过程相关。这项成像研究为工程化慢病毒的感染机制提供了一些线索,并且可能有助于设计更高效的基因递送载体。

相似文献

1
Visualization of targeted transduction by engineered lentiviral vectors.
Gene Ther. 2008 Oct;15(20):1384-96. doi: 10.1038/gt.2008.87. Epub 2008 May 15.
2
Targeting lentiviral vectors to specific cell types in vivo.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11479-84. doi: 10.1073/pnas.0604993103. Epub 2006 Jul 24.
4
Lentiviral Vectors Mediate Long-Term and High Efficiency Transgene Expression in HEK 293T cells.
Int J Med Sci. 2015 May 15;12(5):407-15. doi: 10.7150/ijms.11270. eCollection 2015.
5
Pseudotyped Lentiviral Vectors: One Vector, Many Guises.
Hum Gene Ther Methods. 2017 Dec;28(6):291-301. doi: 10.1089/hgtb.2017.084. Epub 2017 Sep 4.
9
Visualization of DC-SIGN-mediated entry pathway of engineered lentiviral vectors in target cells.
PLoS One. 2013 Jun 28;8(6):e67400. doi: 10.1371/journal.pone.0067400. Print 2013.
10
Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies.
PLoS One. 2012;7(10):e46667. doi: 10.1371/journal.pone.0046667. Epub 2012 Oct 10.

引用本文的文献

1
Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2301067120. doi: 10.1073/pnas.2301067120. Epub 2023 Jun 26.
3
Virus-Like Particle Mediated CRISPR/Cas9 Delivery for Efficient and Safe Genome Editing.
Life (Basel). 2020 Dec 21;10(12):366. doi: 10.3390/life10120366.
6
Visualization of DC-SIGN-mediated entry pathway of engineered lentiviral vectors in target cells.
PLoS One. 2013 Jun 28;8(6):e67400. doi: 10.1371/journal.pone.0067400. Print 2013.
7
9
Enhanced real-time monitoring of adeno-associated virus trafficking by virus-quantum dot conjugates.
ACS Nano. 2011 May 24;5(5):3523-35. doi: 10.1021/nn102651p. Epub 2011 Apr 13.
10
Pseudotyping lentiviral vectors with aura virus envelope glycoproteins for DC-SIGN-mediated transduction of dendritic cells.
Hum Gene Ther. 2011 Oct;22(10):1281-91. doi: 10.1089/hum.2010.196. Epub 2011 Jun 13.

本文引用的文献

1
Engineering targeted viral vectors for gene therapy.
Nat Rev Genet. 2007 Aug;8(8):573-87. doi: 10.1038/nrg2141. Epub 2007 Jul 3.
2
Targeting lentiviral vectors to specific cell types in vivo.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11479-84. doi: 10.1073/pnas.0604993103. Epub 2006 Jul 24.
4
Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells.
J Virol. 2006 Feb;80(4):2013-8. doi: 10.1128/JVI.80.4.2013-2018.2006.
5
Intracellular trafficking of retroviral vectors: obstacles and advances.
Gene Ther. 2005 Dec;12(23):1667-78. doi: 10.1038/sj.gt.3302591.
6
Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane.
Mol Biol Cell. 2005 Dec;16(12):5502-13. doi: 10.1091/mbc.e05-06-0496. Epub 2005 Sep 29.
7
Rab conversion as a mechanism of progression from early to late endosomes.
Cell. 2005 Sep 9;122(5):735-49. doi: 10.1016/j.cell.2005.06.043.
8
Altering the tropism of lentiviral vectors through pseudotyping.
Curr Gene Ther. 2005 Aug;5(4):387-98. doi: 10.2174/1566523054546224.
9
Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes.
PLoS Biol. 2005 Jul;3(7):e233. doi: 10.1371/journal.pbio.0030233. Epub 2005 Jun 21.
10
Imaging individual retroviral fusion events: from hemifusion to pore formation and growth.
Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8728-33. doi: 10.1073/pnas.0501864102. Epub 2005 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验