Metari Samy, Deschênes François
Département d'informatique, Faculté de Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
IEEE Trans Image Process. 2008 Jun;17(6):991-1006. doi: 10.1109/TIP.2008.922410.
Real images can contain geometric distortions as well as photometric degradations. Analysis and characterization of those images without recourse to either restoration or geometric standardization is of great importance for the computer vision community as those two processes are often ill-posed problems. To this end, it is necessary to implement image descriptors that make it possible to identify the original image in a simple way independently of the imaging system and imaging conditions. Ideally, descriptors that capture image characteristics must be invariant to the whole range of geometric distortions and photometric degradations, such as blur, that may affect the image. In this paper, we introduce two new classes of radiometric and/or geometric invariant descriptors. The first class contains two types of radiometric invariant descriptors. The first of these type is based on the Mellin transform and the second one is based on central moments. Both descriptors are invariant to contrast changes and to convolution with any kernel having a symmetric form with respect to the diagonals. The second class contains two subclasses of combined invariant descriptors. The first subclass includes central-moment-based descriptors invariant simultaneously to horizontal and vertical translations, to uniform and anisotropic scaling, to stretching, to convolution, and to contrast changes. The second subclass contains central-complex-moment-based descriptors that are simultaneously invariant to similarity transformation and to contrast changes. We apply these invariant descriptors to the matching of geometric transformed and/or blurred images. Experimental results confirm both the robustness and the effectiveness of the proposed invariants.
真实图像可能包含几何畸变以及光度退化。在不借助恢复或几何标准化的情况下对这些图像进行分析和表征,对计算机视觉领域非常重要,因为这两个过程通常是不适定问题。为此,有必要实现图像描述符,以便能够以简单的方式识别原始图像,而与成像系统和成像条件无关。理想情况下,捕获图像特征的描述符必须对可能影响图像的整个几何畸变和光度退化范围(如模糊)保持不变。在本文中,我们引入了两类新的辐射度和/或几何不变描述符。第一类包含两种类型的辐射度不变描述符。其中第一种基于梅林变换,第二种基于中心矩。这两种描述符对于对比度变化以及与任何关于对角线具有对称形式的核进行卷积都是不变的。第二类包含组合不变描述符的两个子类。第一个子类包括基于中心矩的描述符,它同时对水平和垂直平移、均匀和各向异性缩放、拉伸、卷积以及对比度变化保持不变。第二个子类包含基于中心复矩的描述符,它同时对相似变换和对比度变化保持不变。我们将这些不变描述符应用于几何变换和/或模糊图像的匹配。实验结果证实了所提出的不变量的鲁棒性和有效性。