Siller Karsten H, Doe Chris Q
Howard Hughes Medical Institute, Institutes of Molecular Biology and Neuroscience, University of Oregon, Eugene, OR 97403, USA.
Dev Biol. 2008 Jul 1;319(1):1-9. doi: 10.1016/j.ydbio.2008.03.018. Epub 2008 Mar 21.
Mitotic spindle orientation in polarized cells determines whether they divide symmetrically or asymmetrically. Moreover, regulated spindle orientation may be important for embryonic development, stem cell biology, and tumor growth. Drosophila neuroblasts align their spindle along an apical/basal cortical polarity axis to self-renew an apical neuroblast and generate a basal differentiating cell. It is unknown whether spindle alignment requires both apical and basal cues, nor have molecular motors been identified that regulate spindle movement. Using live imaging of neuroblasts within intact larval brains, we detect independent movement of both apical and basal spindle poles, suggesting that forces act on both poles. We show that reducing astral microtubules decreases the frequency of spindle movement, but not its maximum velocity, suggesting that one or few microtubules can move the spindle. Mutants in the Lis1/dynactin complex strongly decrease maximum and average spindle velocity, consistent with this motor complex mediating spindle/cortex forces. Loss of either astral microtubules or Lis1/dynactin leads to spindle/cortical polarity alignment defects at metaphase, but these are rescued by telophase. We propose that an early Lis1/dynactin-dependent pathway and a late Lis1/dynactin-independent pathway regulate neuroblast spindle orientation.
极化细胞中的有丝分裂纺锤体定向决定了它们是对称分裂还是不对称分裂。此外,受调控的纺锤体定向对于胚胎发育、干细胞生物学和肿瘤生长可能很重要。果蝇神经母细胞沿着顶端/基底皮质极性轴排列其纺锤体,以自我更新顶端神经母细胞并产生一个基底分化细胞。尚不清楚纺锤体排列是否需要顶端和基底线索,也未鉴定出调节纺锤体运动的分子马达。通过对完整幼虫大脑中的神经母细胞进行实时成像,我们检测到顶端和基底纺锤体极的独立运动,这表明力作用于两极。我们发现减少星体微管会降低纺锤体运动的频率,但不会降低其最大速度,这表明一根或几根微管就能移动纺锤体。Lis1/动力蛋白复合体的突变体强烈降低了纺锤体的最大和平均速度,这与该马达复合体介导纺锤体/皮质力一致。星体微管或Lis1/动力蛋白的缺失会导致中期纺锤体/皮质极性排列缺陷,但这些缺陷在末期得到挽救。我们提出,一条早期的依赖Lis1/动力蛋白的途径和一条晚期的不依赖Lis1/动力蛋白的途径调节神经母细胞纺锤体定向。