Capuani Silvia, Porcari Paola, Fasano Fabrizio, Campanella Renzo, Maraviglia Bruno
CNR-INFM CRS SOFT, Physics Department, University La Sapienza, Rome, Italy.
Magn Reson Imaging. 2008 Sep;26(7):987-93. doi: 10.1016/j.mri.2008.01.040. Epub 2008 May 16.
Boron neutron capture therapy (BNCT) is a binary radiation therapy used to treat malignant brain tumours. It is based on the nuclear reaction (10B + n th --> [11B*] --> alpha + 7Li + 2.79 MeV) that occurs when 10B captures a thermal neutron to yield alpha particles and recoiling 7Li nuclei, both responsible of tumour cells destruction by short range and high ionization energy release. The clinical success of the therapy depends on the selective accumulation of the 10B carriers in the tumour and on the high thermal neutron capture cross-section of 10B. Magnetic resonance imaging (MRI) methods provide the possibility of monitoring, through 10B nuclei, the metabolic and physiological processes suitable to optimize the BNCT procedure. In this study, spatial distribution mapping of borocaptate (BSH) and 4-borono-phenylalanine (BPA), the two boron carriers used in clinical trials, has been obtained. The BSH map in excised rat brain and the 19F-BPA image in vivo rat brain, representative of BPA spatial distribution, were reported. The BSH image was obtained by means of double-resonance 10B-editing 1H-detection sequence, named M-Bend, exploiting the J-coupling interaction between 10B and 1H nuclei. Conversely, the BPA map was obtained by 19F-BPA using 19F-MRI. Both images were obtained at 7 T, in C6 glioma-bearing rat brain. Our results demonstrate the powerful of non conventional MRI techniques to optimize the BNCT procedure.
硼中子俘获疗法(BNCT)是一种用于治疗恶性脑肿瘤的二元放射疗法。它基于核反应((^{10}B + n_{th} \to [^{11}B^*] \to \alpha + ^{7}Li + 2.79 MeV)),即当(^{10}B)俘获一个热中子产生α粒子和反冲的(^{7}Li)核时发生的反应,这两者都通过短程和高电离能释放来破坏肿瘤细胞。该疗法的临床成功取决于(^{10}B)载体在肿瘤中的选择性积累以及(^{10}B)的高热中子俘获截面。磁共振成像(MRI)方法提供了通过(^{10}B)核监测适合优化BNCT程序的代谢和生理过程的可能性。在本研究中,已获得临床试验中使用的两种硼载体硼卡醇(BSH)和4-硼代苯丙氨酸(BPA)的空间分布图。报道了切除的大鼠脑中的BSH图和体内大鼠脑中代表BPA空间分布的(^{19}F - BPA)图像。通过利用(^{10}B)和(^{1}H)核之间的J耦合相互作用的双共振(^{10}B)编辑(^{1}H)检测序列(称为M-Bend)获得了BSH图像。相反,通过(^{19}F - MRI)使用(^{19}F - BPA)获得了BPA图。这两种图像均在7T下在患有C6胶质瘤的大鼠脑中获得。我们的结果证明了非传统MRI技术在优化BNCT程序方面的强大作用。