Huang Yuanpeng Janet, Hang Dehua, Lu Long Jason, Tong Liang, Gerstein Mark B, Montelione Gaetano T
Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA.
Mol Cell Proteomics. 2008 Oct;7(10):2048-60. doi: 10.1074/mcp.M700550-MCP200. Epub 2008 May 18.
Structural genomics provides an important approach for characterizing and understanding systems biology. As a step toward better integrating protein three-dimensional (3D) structural information in cancer systems biology, we have constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well known cancer-associated proteins play central roles as "hubs" or "bottlenecks" in the HCPIN. At least half of HCPIN proteins are either directly associated with or interact with multiple signaling pathways. Although some 45% of residues in these proteins are in sequence segments that meet criteria sufficient for approximate homology modeling (Basic Local Alignment Search Tool (BLAST) E-value <10(-6)), only approximately 20% of residues in these proteins are structurally covered using high accuracy homology modeling criteria (i.e. BLAST E-value <10(-6) and at least 80% sequence identity) or by actual experimental structures. The HCPIN Website provides a comprehensive description of this biomedically important multipathway network together with experimental and homology models of HCPIN proteins useful for cancer biology research. To complement and enrich cancer systems biology, the Northeast Structural Genomics Consortium is targeting >1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes in the context of their interaction networks. The network-based target selection (BioNet) approach described here is an example of a general strategy for targeting co-functioning proteins by structural genomics projects.
结构基因组学为表征和理解系统生物学提供了重要方法。作为在癌症系统生物学中更好地整合蛋白质三维(3D)结构信息的一步,我们通过分析几种经典的癌症相关信号通路及其物理性蛋白质-蛋白质相互作用,构建了一个人类癌症通路蛋白质相互作用网络(HCPIN)。许多知名的癌症相关蛋白在HCPIN中作为“枢纽”或“瓶颈”发挥核心作用。HCPIN中至少一半的蛋白质要么直接与多个信号通路相关,要么与多个信号通路相互作用。尽管这些蛋白质中约45%的残基位于满足近似同源建模标准(基本局部比对搜索工具(BLAST)E值<10^(-6))的序列片段中,但使用高精度同源建模标准(即BLAST E值<10^(-6)且序列同一性至少为80%)或通过实际实验结构,这些蛋白质中只有约20%的残基在结构上得到覆盖。HCPIN网站提供了这个具有重要生物医学意义的多通路网络的全面描述,以及对癌症生物学研究有用的HCPIN蛋白质的实验模型和同源模型。为了补充和丰富癌症系统生物学,东北结构基因组学联盟将HCPIN中的1000多种人类蛋白质和蛋白质结构域作为样本生产和三维结构测定的目标。这项工作的长期目标是在人类癌症相关蛋白质和蛋白质复合物的相互作用网络背景下,提供一个全面的三维结构-功能数据库。这里描述的基于网络的靶标选择(BioNet)方法是结构基因组学项目针对协同功能蛋白质的一般策略的一个例子。