Dermatology Clinic, Karolinska University Hospital, Stockholm, Sweden.
Int J Cosmet Sci. 2006 Dec;28(6):397-425. doi: 10.1111/j.1467-2494.2006.00345.x.
A comprehensive review on stratum corneum keratin organization, largely based on the recently published cubic rod-packing and membrane templating model [J. Invest. Dermatol., 123, 2004, 715], is presented. Keratin is the major non-aqueous component (wt/wt) of stratum corneum. As 90-100% of the stratum corneum water is thought to be located intracellularly one may presume that keratin also is a major factor (together with filaggrin-derived free amino acids) determining stratum corneum hydration level and water holding capacity. This water holding capacity depends in turn on the structural organization of the corneocyte keratin intermediate filament network. The cubic rod-packing model for the structure and function of the stratum corneum cell matrix postulates that corneocyte keratin filaments are arranged according to a cubic-like rod-packing symmetry. It is in accordance with the cryo-electron density pattern of the native corneocyte keratin matrix and could account for the swelling behaviour and the mechanical properties of mammalian stratum corneum. The membrane templating model for keratin dynamics and for the formation of the stratum corneum cell matrix postulates the presence in viable epidermal cellular space of a highly dynamic small lattice parameter (<30 nm) membrane structure with cubic-like symmetry, to which keratin is associated. It further proposes that membrane templating, rather than spontaneous self-assembly, is responsible for keratin intermediate filament formation and dynamics. It is in accordance with the cryo-electron density patterns of the native keratinocyte cytoplasmic space and could account for the characteristic features of the keratin network formation process, the dynamic properties of keratin intermediate filaments, the close lipid association of keratin, the insolubility in non-denaturating buffers and pronounced polymorphism of keratin assembled in vitro, and the measured reduction in cell-volume and hydration level between stratum granulosum and stratum corneum.
本文对表皮角质层角蛋白的组织结构进行了全面的综述,主要基于最近发表的立方棒状结构和膜模板模型[J. Invest. Dermatol.,123,2004,715]。角蛋白是表皮角质层的主要非水成分(质量比)。由于角质层 90-100%的水分被认为位于细胞内,因此可以推测角蛋白也是决定角质层水合水平和持水能力的主要因素(与颗粒层丝聚合蛋白衍生的游离氨基酸一起)。这种持水能力反过来又取决于角质形成细胞角蛋白中间丝网络的结构组织。角质层细胞基质的立方棒状结构和功能的棒状包装模型假设角质形成细胞角蛋白丝按照类似立方的棒状包装对称性排列。它与天然角质形成细胞角蛋白基质的冷冻电子密度模式一致,并可以解释哺乳动物角质层的膨胀行为和机械性能。角蛋白动态和角质层细胞基质形成的膜模板模型假设在有活力的表皮细胞空间中存在具有类似立方对称性的高度动态的小晶格参数(<30nm)膜结构,角蛋白与之相关。它进一步提出,膜模板而不是自发的自组装,对角质中间丝的形成和动态负责。它与天然角质形成细胞质空间的冷冻电子密度模式一致,并可以解释角蛋白网络形成过程的特征、角蛋白中间丝的动态特性、角蛋白与脂质的紧密结合、在非变性缓冲液中不溶解以及体外组装的角蛋白的明显多态性,以及测量到的颗粒层和角质层之间细胞体积和水合水平的降低。