Ara Roberta, Brazier John
The University of Sheffield, Sheffield, UK.
Value Health. 2008 Dec;11(7):1131-43. doi: 10.1111/j.1524-4733.2008.00352.x. Epub 2008 May 16.
The objective of the study was to derive a method to predict a mean cohort EQ-5D preference-based index score using published mean statistics of the eight dimension scores describing the SF-36 health profile.
Ordinary least square regressions models are derived using patient level data (n = 6350) collected during 12 clinical studies. The models were compared for goodness of fit using standard techniques such as variance explained, the magnitude of errors in predicted values, and the proportion of values within the minimal important difference of the EQ-5D. Predictive abilities were also compared using summary statistics from both within-sample subgroups and published studies.
The models obtained explained more than 56% of the variance in the EQ-5D scores. The mean predicted EQ-5D score was correct to within two decimal places for all models and the absolute error for the individual predicted values was approximately 0.13. Using summary statistics to predict within-sample subgroup mean EQ-5D scores, the mean errors (mean absolute errors) ranged from 0.021 to 0.077 (0.045-0.083). These statistics for the out-of-sample published data sets ranged from 0.048 to 0.099 (0.064-0.010).
The models provided researchers with a mechanism to estimate EQ-5D utility data from published mean dimension scores. This research is unique in that it uses mean statistics from published studies to validate the results. While further research is required to validate the results in additional health conditions, the algorithms can be used to derive additional preference-based measures for use in economic analyses.
本研究的目的是推导出一种方法,使用已发表的描述SF-36健康状况的八个维度得分的均值统计数据,来预测队列平均EQ-5D基于偏好的指数得分。
使用在12项临床研究中收集的患者水平数据(n = 6350)推导普通最小二乘回归模型。使用诸如解释方差、预测值误差大小以及EQ-5D最小重要差异内的值的比例等标准技术,对模型的拟合优度进行比较。还使用样本内亚组和已发表研究的汇总统计数据比较预测能力。
获得的模型解释了EQ-5D得分中超过56%的方差。所有模型的平均预测EQ-5D得分精确到小数点后两位,个体预测值的绝对误差约为0.13。使用汇总统计数据预测样本内亚组平均EQ-5D得分时,平均误差(平均绝对误差)范围为0.021至0.077(0.045 - 0.083)。样本外已发表数据集的这些统计数据范围为0.048至0.099(0.064 - 0.010)。
这些模型为研究人员提供了一种机制,可根据已发表的平均维度得分来估计EQ-5D效用数据。本研究具有独特性,因为它使用已发表研究的均值统计数据来验证结果。虽然需要进一步研究以在其他健康状况下验证结果,但这些算法可用于推导用于经济分析的其他基于偏好的测量方法。