Suppr超能文献

用于流式细胞术中细胞亚型识别的统计混合模型

Statistical mixture modeling for cell subtype identification in flow cytometry.

作者信息

Chan Cliburn, Feng Feng, Ottinger Janet, Foster David, West Mike, Kepler Thomas B

机构信息

Center for Computational Immunology, Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina 27705, USA.

出版信息

Cytometry A. 2008 Aug;73(8):693-701. doi: 10.1002/cyto.a.20583.

Abstract

Statistical mixture modeling provides an opportunity for automated identification and resolution of cell subtypes in flow cytometric data. The configuration of cells as represented by multiple markers simultaneously can be modeled arbitrarily well as a mixture of Gaussian distributions in the dimension of the number of markers. Cellular subtypes may be related to one or multiple components of such mixtures, and fitted mixture models can be evaluated in the full set of markers as an alternative, or adjunct, to traditional subjective gating methods that rely on choosing one or two dimensions. Four color flow data from human blood cells labeled with FITC-conjugated anti-CD3, PE-conjugated anti-CD8, PE-Cy5-conjugated anti-CD4, and APC-conjugated anti-CD19 Abs was acquired on a FACSCalibur. Cells from four murine cell lines, JAWS II, RAW 264.7, CTLL-2, and A20, were also stained with FITC-conjugated anti-CD11c, PE-conjugated anti-CD11b, PE-Cy5-conjugated anti-CD8a, and PE-Cy7-conjugated-CD45R/B220 Abs, respectively, and single color flow data were collected on an LSRII. The data were fitted with a mixture of multivariate Gaussians using standard Bayesian statistical approaches and Markov chain Monte Carlo computations. Statistical mixture models were able to identify and purify major cell subsets in human peripheral blood, using an automated process that can be generalized to an arbitrary number of markers. Validation against both traditional expert gating and synthetic mixtures of murine cell lines with known mixing proportions was also performed. This article describes the studies of statistical mixture modeling of flow cytometric data, and demonstrates their utility in examples with four-color flow data from human peripheral blood samples and synthetic mixtures of murine cell lines.

摘要

统计混合模型为自动识别和解析流式细胞术数据中的细胞亚群提供了机会。由多个标记同时表示的细胞配置可以在标记数量维度上很好地建模为高斯分布的混合。细胞亚群可能与这种混合的一个或多个成分相关,并且拟合的混合模型可以在全套标记中进行评估,作为依赖于选择一两个维度的传统主观设门方法的替代或辅助方法。在FACSCalibur上采集了用异硫氰酸荧光素(FITC)偶联的抗CD3、藻红蛋白(PE)偶联的抗CD8、藻红蛋白-花青苷5(PE-Cy5)偶联的抗CD4和别藻蓝蛋白(APC)偶联的抗CD19抗体标记的人血细胞的四色流式数据。来自四种小鼠细胞系JAWS II、RAW 264.7、CTLL-2和A20的细胞也分别用FITC偶联的抗CD11c、PE偶联的抗CD11b、PE-Cy5偶联的抗CD8a和PE-Cy7偶联的CD45R/B220抗体进行染色,并在LSRII上收集单色流式数据。使用标准贝叶斯统计方法和马尔可夫链蒙特卡罗计算,将数据与多元高斯混合模型进行拟合。统计混合模型能够通过一个可推广到任意数量标记的自动化过程,识别和纯化人外周血中的主要细胞亚群。还针对传统专家设门和已知混合比例的小鼠细胞系合成混合物进行了验证。本文描述了流式细胞术数据的统计混合模型研究,并在来自人外周血样本的四色流式数据和小鼠细胞系合成混合物的示例中展示了它们的实用性。

相似文献

1
Statistical mixture modeling for cell subtype identification in flow cytometry.
Cytometry A. 2008 Aug;73(8):693-701. doi: 10.1002/cyto.a.20583.
3
A six-color flow cytometric assay for the analysis of peripheral blood dendritic cells.
Cytometry B Clin Cytom. 2008 Nov;74(6):349-55. doi: 10.1002/cyto.b.20434.
6
Discriminative variable subsets in Bayesian classification with mixture models, with application in flow cytometry studies.
Biostatistics. 2016 Jan;17(1):40-53. doi: 10.1093/biostatistics/kxv021. Epub 2015 Jun 3.
7
Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.
PLoS Comput Biol. 2013;9(7):e1003130. doi: 10.1371/journal.pcbi.1003130. Epub 2013 Jul 11.
9
Near-infrared dyes for six-color immunophenotyping by laser scanning cytometry.
Cytometry. 2002 Jul 1;48(3):115-23. doi: 10.1002/cyto.10119.
10
Filter selection for five color flow cytometric analysis with a single laser.
Int J Lab Hematol. 2007 Oct;29(5):369-76. doi: 10.1111/j.1365-2257.2006.00852.x.

引用本文的文献

1
GateMeClass: Gate Mining and Classification of cytometry data.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae322.
2
Statistical and machine learning methods for immunoprofiling based on single-cell data.
Hum Vaccin Immunother. 2023 Aug 1;19(2):2234792. doi: 10.1080/21645515.2023.2234792. Epub 2023 Jul 24.
3
INFLECT: an R-package for cytometry cluster evaluation using marker modality.
BMC Bioinformatics. 2022 Nov 16;23(1):487. doi: 10.1186/s12859-022-05018-w.
4
Consensus clustering for Bayesian mixture models.
BMC Bioinformatics. 2022 Jul 21;23(1):290. doi: 10.1186/s12859-022-04830-8.
5
Statistically derived geometrical landscapes capture principles of decision-making dynamics during cell fate transitions.
Cell Syst. 2022 Jan 19;13(1):12-28.e3. doi: 10.1016/j.cels.2021.08.013. Epub 2021 Sep 17.
7
High-speed automatic characterization of rare events in flow cytometric data.
PLoS One. 2020 Feb 11;15(2):e0228651. doi: 10.1371/journal.pone.0228651. eCollection 2020.
8
[Cell data clustering method in flow cytometry based on kernel principal component analysis].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Feb;34(1):115-22. doi: 10.7507/1001-5515.201604088.
9
CRISPulator: a discrete simulation tool for pooled genetic screens.
BMC Bioinformatics. 2017 Jul 21;18(1):347. doi: 10.1186/s12859-017-1759-9.
10
Identifying Mixtures of Mixtures Using Bayesian Estimation.
J Comput Graph Stat. 2017 Apr 3;26(2):285-295. doi: 10.1080/10618600.2016.1200472. Epub 2017 Apr 24.

本文引用的文献

1
A focus on automated recognition.
Cytometry A. 2007 Oct;71(10):769-70. doi: 10.1002/cyto.a.20472.
3
Standardization of cytokine flow cytometry assays.
BMC Immunol. 2005 Jun 24;6:13. doi: 10.1186/1471-2172-6-13.
4
Hyperlog-a flexible log-like transform for negative, zero, and positive valued data.
Cytometry A. 2005 Mar;64(1):34-42. doi: 10.1002/cyto.a.20114.
5
Open source clustering software.
Bioinformatics. 2004 Jun 12;20(9):1453-4. doi: 10.1093/bioinformatics/bth078. Epub 2004 Feb 10.
6
Excitatory synaptic site heterogeneity during paired pulse plasticity in CA1 pyramidal cells in rat hippocampus in vitro.
J Physiol. 1997 Apr 15;500 ( Pt 2)(Pt 2):441-61. doi: 10.1113/jphysiol.1997.sp022032.
7
Bayesian analysis of mixtures applied to post-synaptic potential fluctuations.
J Neurosci Methods. 1993 Apr;47(1-2):1-21. doi: 10.1016/0165-0270(93)90017-l.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验