Suppr超能文献

高速自动分析流式细胞术数据中的稀有事件。

High-speed automatic characterization of rare events in flow cytometric data.

机构信息

Department of Computer Science, Purdue University, West Lafayette, IN, United States of America.

Department of Statistics, Purdue University, West Lafayette, IN, United States of America.

出版信息

PLoS One. 2020 Feb 11;15(2):e0228651. doi: 10.1371/journal.pone.0228651. eCollection 2020.

Abstract

A new computational framework for FLow cytometric Analysis of Rare Events (FLARE) has been developed specifically for fast and automatic identification of rare cell populations in very large samples generated by platforms like multi-parametric flow cytometry. Using a hierarchical Bayesian model and information-sharing via parallel computation, FLARE rapidly explores the high-dimensional marker-space to detect highly rare populations that are consistent across multiple samples. Further it can focus within specified regions of interest in marker-space to detect subpopulations with desired precision.

摘要

一种新的用于稀有事件流式细胞术分析(FLARE)的计算框架已经专门开发出来,用于快速自动识别多参数流式细胞术等平台产生的非常大样本中的稀有细胞群。使用分层贝叶斯模型和通过并行计算进行信息共享,FLARE 可以快速探索高维标记空间,以检测在多个样本中一致的高度稀有群体。此外,它还可以在标记空间的指定感兴趣区域内聚焦,以检测具有所需精度的亚群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b100/7012421/0de98abeddd1/pone.0228651.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验