Foltan Jaromir S
Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia.
J Theor Biol. 2008 Aug 7;253(3):469-82. doi: 10.1016/j.jtbi.2008.03.006. Epub 2008 Mar 13.
The genetic code describes translational assignments between codons and amino acids. tRNAs and aminoacyl-tRNA synthetases (aaRSs) are those molecules by means of which these assignments are established. Any aaRS recognizes its tRNAs according to some of their nucleotides called identity elements (IEs). Let a 1Mut-similarity Sim (1Mut) be the average similarity between such tRNA genes whose codons differ by one point mutation. We showed that: (1) a global maximum of Sim (1Mut) is reached at the standard genetic code 27 times for 4 sets of IEs of tRNA genes of eukaryotic species, while it is so only 5 times for similarities Sim (C&R) between all tRNA genes whose codons lie in the same column or row of the code. Therefore, point mutations of anticodons were tested by nature to recruit tRNAs from one isoaccepting group to another, (2) because plain similarities Sim (all) between tRNA genes of species within any of the three domains of life are higher than between tRNA genes of species belonging to different domains, tRNA genes retained information about early evolution of cells, (3) we searched the order of tRNAs in which they were most probably assigned to their codons and amino acids. The beginning Ala, (Val), Pro, Ile, Lys, Arg, Trp, Met, Asp, Cys, (Ser) of our resulting chronology lies under a plateau on a graph of Sim (1Mut,IE)(univ.ancestors) plotted over this chronology for a set S(IE) of all IEs of tRNA genes, whose universal ancestors were separately computed for each codon. This plateau has remained preserved along the whole line of evolution of the code and is consistent with observations of Ribas de Pouplana and Schimmel [2001. Aminoacy1-tRNA synthetases: potential markers of genetic code development. Trends Biochem. Sci. 26, 591-598] that specific pairs of aaRSs-one from each of their two classes-can be docked simultaneously onto the acceptor stem of tRNA and hence an interaction existed between their ancestors using a reduced code, (4) sharpness of a local maximum of Sim (1Mut) at the standard code is almost 100% along our chronologies.
遗传密码描述了密码子与氨基酸之间的翻译对应关系。转运RNA(tRNA)和氨酰tRNA合成酶(aaRS)是确立这些对应关系的分子。任何一种aaRS根据其一些被称为识别元件(IE)的核苷酸来识别其tRNA。设1突变相似性Sim(1Mut)为密码子相差一个点突变的此类tRNA基因之间的平均相似性。我们发现:(1)对于真核生物物种tRNA基因的4组IE,Sim(1Mut)的全局最大值在标准遗传密码下出现27次,而对于密码子位于密码表同一列或同一行的所有tRNA基因之间的相似性Sim(C&R),仅出现5次。因此,反密码子的点突变在自然界中经过了检验,以便将tRNA从一个同功受体组招募到另一个同功受体组;(2)因为生命三个域中任何一个域内物种的tRNA基因之间的普通相似性Sim(所有)高于属于不同域的物种的tRNA基因之间的相似性,所以tRNA基因保留了关于细胞早期进化的信息;(3)我们搜索了tRNA最有可能被分配到其密码子和氨基酸的顺序。我们得出的时间顺序中,起始的丙氨酸、(缬氨酸)、脯氨酸、异亮氨酸、赖氨酸、精氨酸、色氨酸、甲硫氨酸、天冬氨酸、半胱氨酸、(丝氨酸)位于Sim(1Mut,IE)(通用祖先)图的一个平台之下,该图是针对tRNA基因所有IE的集合S(IE)根据此时间顺序绘制的,其通用祖先针对每个密码子分别计算得出。这个平台在密码子进化的整条线上一直保留着,并且与里巴斯·德·普普拉纳和席梅尔[2001年。氨酰tRNA合成酶:遗传密码发展的潜在标记。《生物化学趋势》26,591 - 598]的观察结果一致,即特定的一对aaRS(分别来自它们的两个类别之一)可以同时停靠在tRNA的受体茎上,因此它们的祖先之间使用简化密码存在相互作用;(4)沿着我们得出的时间顺序,在标准密码下Sim(1Mut)局部最大值的尖锐度几乎为100%。