Macé Kevin, Gillet Reynald
Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France.
Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France Institut Universitaire de France
Nucleic Acids Res. 2016 Sep 30;44(17):8041-51. doi: 10.1093/nar/gkw693. Epub 2016 Aug 2.
The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis.
RNA世界假说指的是地球上的早期阶段,在这个时期,RNA在确保遗传连续性和催化作用方面处于核心地位。这个时代的结束与遗传密码和蛋白质合成的发展同时发生,其标志是首个非随机信使RNA(mRNA)的出现。现代转移信使RNA(tmRNA)是一种独特的杂交分子,兼具mRNA和转移RNA(tRNA)的特性。它在反式翻译过程中起着关键作用,反式翻译是现代细菌蛋白质合成的主要质量控制途径。tmRNA与原始RNA有许多共同特征。在此,我们提出一个模型,即原始tmRNA是地球上最早支持非随机蛋白质合成的分子,解释了早期遗传密码的出现。通过这种方式,原始tmRNA可能是首个mRNA和tRNA分子与现代核糖体介导的蛋白质合成之间缺失的环节。