Ostera Graciela, Tokumasu Fuyuki, Oliveira Fabiano, Sa Juliana, Furuya Tetsuya, Teixeira Clarissa, Dvorak James
Biophysical and Biochemical Parasitology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
Exp Parasitol. 2008 Sep;120(1):29-38. doi: 10.1016/j.exppara.2008.04.014. Epub 2008 Apr 24.
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO's biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P. falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite.
一氧化氮(NO)具有多种生物学功能。众多研究记录了NO在多种生物体中的生物合成途径。然而,关于恶性疟原虫红细胞内NO的产生却知之甚少。我们使用荧光指示剂二氨基罗丹明 - 4 - 甲基乙酰氧基甲酯(DAR - 4M AM),获得了恶性疟原虫红细胞内寄生虫以及来自滋养体阶段寄生虫的分离食物泡中产生NO和NO衍生的活性氮物质(RNS)的直接证据。我们初步鉴定了两个可能与恶性疟原虫红细胞内NO合成有关的基因序列。我们展示了这两个基因之一的蛋白质产物(一种在结构上与植物硝酸还原酶相似的分子)在滋养体食物泡膜中的定位。我们证实了之前关于一氧化氮合酶(NOS)抑制剂对恶性疟原虫培养物具有抗增殖作用的报道;然而,我们没有获得证据表明NOS抑制剂有能力抑制RNS的产生,也没有证据表明在该寄生虫的成熟形式中有活性NOS。我们得出结论,一种硝酸还原酶活性在恶性疟原虫寄生虫的食物泡内或其周围产生NO和NO衍生的RNS。食物泡是一个关键的寄生区室,参与血红蛋白降解、血红素解毒以及抗疟药物作用的靶点。对这种相对未被探索的合成活性的表征可以为疟疾寄生虫了解甚少的代谢过程提供重要线索。