Segers-Nolten Ine M J, Wilhelmus Micha M M, Veldhuis Gertjan, van Rooijen Bart D, Drukarch Benjamin, Subramaniam Vinod
Biophysical Engineering Group, MESA+ Institute for Nanotechnology and Institute for Biomedical Technology, University of Twente, 7500 AE Enschede, The Netherlands.
Protein Sci. 2008 Aug;17(8):1395-402. doi: 10.1110/ps.036103.108. Epub 2008 May 27.
We have studied the interaction of the enzyme tissue transglutaminase (tTG), catalyzing cross-link formation between protein-bound glutamine residues and primary amines, with Parkinson's disease-associated alpha-synuclein protein variants at physiologically relevant concentrations. We have, for the first time, determined binding affinities of tTG for wild-type and mutant alpha-synucleins using surface plasmon resonance approaches, revealing high-affinity nanomolar equilibrium dissociation constants. Nanomolar tTG concentrations were sufficient for complete inhibition of fibrillization by effective alpha-synuclein cross-linking, resulting predominantly in intramolecularly cross-linked monomers accompanied by an oligomeric fraction. Since oligomeric species have a pathophysiological relevance we further investigated the properties of the tTG/alpha-synuclein oligomers. Atomic force microscopy revealed morphologically similar structures for oligomers from all alpha-synuclein variants; the extent of oligomer formation was found to correlate with tTG concentration. Unlike normal alpha-synuclein oligomers the resultant structures were extremely stable and resistant to GdnHCl and SDS. In contrast to normal beta-sheet-containing oligomers, the tTG/alpha-synuclein oligomers appear to be unstructured and are unable to disrupt phospholipid vesicles. These data suggest that tTG binds equally effective to wild-type and disease mutant alpha-synuclein variants. We propose that tTG cross-linking imposes structural constraints on alpha-synuclein, preventing the assembly of structured oligomers required for disruption of membranes and for progression into fibrils. In general, cross-linking of amyloid forming proteins by tTG may prevent the progression into pathogenic species.
我们研究了催化蛋白质结合的谷氨酰胺残基与伯胺之间形成交联的组织转谷氨酰胺酶(tTG),在生理相关浓度下与帕金森病相关的α-突触核蛋白变体的相互作用。我们首次使用表面等离子体共振方法测定了tTG对野生型和突变型α-突触核蛋白的结合亲和力,揭示了高亲和力的纳摩尔平衡解离常数。纳摩尔浓度的tTG足以通过有效的α-突触核蛋白交联完全抑制纤维化,主要产生分子内交联的单体以及少量寡聚体。由于寡聚体具有病理生理学相关性,我们进一步研究了tTG/α-突触核蛋白寡聚体的性质。原子力显微镜显示所有α-突触核蛋白变体的寡聚体在形态上具有相似的结构;发现寡聚体形成的程度与tTG浓度相关。与正常的α-突触核蛋白寡聚体不同,所得结构极其稳定,对盐酸胍和十二烷基硫酸钠具有抗性。与正常的含β-折叠寡聚体相反,tTG/α-突触核蛋白寡聚体似乎是无结构的,并且无法破坏磷脂囊泡。这些数据表明,tTG对野生型和疾病突变型α-突触核蛋白变体的结合同样有效。我们提出,tTG交联对α-突触核蛋白施加了结构限制,阻止了破坏膜和形成纤维所需的结构化寡聚体的组装。一般来说,tTG对淀粉样蛋白形成蛋白的交联可能会阻止其发展为致病物种。