Schmid Adrien W, Chiappe Diego, Pignat Vérène, Grimminger Valerie, Hang Ivan, Moniatte Marc, Lashuel Hilal A
Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
J Biol Chem. 2009 May 8;284(19):13128-42. doi: 10.1074/jbc.M809067200. Epub 2009 Jan 21.
Tissue transglutaminase (tTG) has been implicated in the pathogenesis of Parkinson disease (PD). However, exactly how tTG modulates the structural and functional properties of alpha-synuclein (alpha-syn) and contributes to the pathogenesis of PD remains unknown. Using site-directed mutagenesis combined with detailed biophysical and mass spectrometry analyses, we sought to identify the exact residues involved in tTG-catalyzed cross-linking of wild-type alpha-syn and alpha-syn mutants associated with PD. To better understand the structural consequences of each cross-linking reaction, we determined the effect of tTG-catalyzed cross-linking on the oligomerization, fibrillization, and membrane binding of alpha-syn in vitro. Our findings show that tTG-catalyzed cross-linking of monomeric alpha-syn involves multiple cross-links (specifically 2-3). We subjected tTG-catalyzed cross-linked monomeric alpha-syn composed of either wild-type or Gln --> Asn mutants to sequential proteolysis by multiple enzymes and peptide mapping by mass spectrometry. Using this approach, we identified the glutamine and lysine residues involved in tTG-catalyzed intramolecular cross-linking of alpha-syn. These studies demonstrate for the first time that Gln(79) and Gln(109) serve as the primary tTG reactive sites. Mutating both residues to asparagine abolishes tTG-catalyzed cross-linking of alpha-syn and tTG-induced inhibition of alpha-syn fibrillization in vitro. To further elucidate the sequence and structural basis underlying these effects, we identified the lysine residues that form isopeptide bonds with Gln(79) and Gln(109). This study provides mechanistic insight into the sequence and structural basis of the inhibitory effects of tTG on alpha-syn fibrillogenesis in vivo, and it sheds light on the potential role of tTG cross-linking on modulating the physiological and pathogenic properties of alpha-syn.
组织转谷氨酰胺酶(tTG)与帕金森病(PD)的发病机制有关。然而,tTG究竟如何调节α-突触核蛋白(α-syn)的结构和功能特性并促成PD的发病机制仍不清楚。我们运用定点诱变技术,结合详细的生物物理和质谱分析,试图确定参与tTG催化野生型α-syn以及与PD相关的α-syn突变体交联反应的确切残基。为了更好地理解每个交联反应的结构后果,我们在体外确定了tTG催化交联对α-syn的寡聚化、纤维化和膜结合的影响。我们的研究结果表明,tTG催化的单体α-syn交联涉及多个交联(具体为2-3个)。我们对由野生型或谷氨酰胺(Gln)→天冬酰胺(Asn)突变体组成的tTG催化交联单体α-syn进行了多种酶的顺序蛋白酶解和质谱肽图谱分析。通过这种方法,我们确定了参与tTG催化α-syn分子内交联的谷氨酰胺和赖氨酸残基。这些研究首次证明,谷氨酰胺(79)和谷氨酰胺(109)是tTG的主要反应位点。将这两个残基突变为天冬酰胺会消除tTG催化的α-syn交联以及tTG在体外诱导的α-syn纤维化抑制作用。为了进一步阐明这些效应背后的序列和结构基础,我们确定了与谷氨酰胺(79)和谷氨酰胺(109)形成异肽键的赖氨酸残基。这项研究为tTG在体内对α-syn纤维生成抑制作用的序列和结构基础提供了机制性见解,并揭示了tTG交联在调节α-syn生理和致病特性方面的潜在作用。