Suppr超能文献

脓毒症诱导器官衰竭的线粒体机制

Mitochondrial mechanisms of sepsis-induced organ failure.

作者信息

Exline Matthew C, Crouser Elliot D

机构信息

Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University Medical Center, Columbus, Ohio 43210-1252, USA.

出版信息

Front Biosci. 2008 May 1;13:5030-41. doi: 10.2741/3061.

Abstract

Sepsis is the leading cause of death in medical intensive care units. Though progress has been made in the early treatment of sepsis associated with hemodynamic collapse (septic shock), little is known about the pathogenesis of delayed organ dysfunction during sepsis. A growing body of data indicates that sepsis is associated with acute changes in cell metabolism, and that mitochondria are particularly susceptible. The severity of mitochondrial pathology varies according to host and pathogen factors, and appears to correlate with loss of organ dysfunction. In this regard, low levels of cell apoptosis and mitochondrial turnover are normally observed in all metabolically active tissues; however, these homeostatic mechanisms are frequently overwhelmed during sepsis and contribute to cell and tissue pathology. Thus, a better understanding of the mechanisms regulating mitochondrial damage and repair during severe sepsis may provide new treatment options and better outcomes for this deadly disease (30-60% mortality). Herein, we present compelling evidence linking mitochondrial apoptosis pathways to sepsis-induced cell and organ failure and discuss the implications in terms of future sepsis research.

摘要

脓毒症是医学重症监护病房死亡的主要原因。尽管在与血流动力学衰竭相关的脓毒症(感染性休克)的早期治疗方面已取得进展,但对于脓毒症期间延迟性器官功能障碍的发病机制知之甚少。越来越多的数据表明,脓毒症与细胞代谢的急性变化有关,并且线粒体特别容易受到影响。线粒体病理的严重程度因宿主和病原体因素而异,并且似乎与器官功能障碍的丧失相关。在这方面,通常在所有代谢活跃的组织中观察到低水平的细胞凋亡和线粒体更新;然而,这些稳态机制在脓毒症期间经常不堪重负,并导致细胞和组织病理。因此,更好地了解严重脓毒症期间调节线粒体损伤和修复的机制可能为这种致命疾病(死亡率30%-60%)提供新的治疗选择并带来更好的结果。在此,我们提供了令人信服的证据,将线粒体凋亡途径与脓毒症诱导的细胞和器官衰竭联系起来,并讨论其对未来脓毒症研究的意义。

相似文献

1
Mitochondrial mechanisms of sepsis-induced organ failure.
Front Biosci. 2008 May 1;13:5030-41. doi: 10.2741/3061.
2
A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome.
Free Radic Biol Med. 2009 Dec 1;47(11):1517-25. doi: 10.1016/j.freeradbiomed.2009.08.019. Epub 2009 Aug 26.
3
Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure.
J Mol Med (Berl). 2019 Apr;97(4):451-462. doi: 10.1007/s00109-019-01756-2. Epub 2019 Feb 21.
4
Sepsis: links between pathogen sensing and organ damage.
Curr Pharm Des. 2008;14(19):1840-52. doi: 10.2174/138161208784980572.
5
Mitochondrial function in sepsis.
Eur J Clin Invest. 2013 May;43(5):532-42. doi: 10.1111/eci.12069. Epub 2013 Mar 15.
6
Sepsis and multiple organ failure.
Contrib Nephrol. 2007;156:47-63. doi: 10.1159/000102070.
7
Alterations of mitochondrial function in sepsis and critical illness.
Curr Opin Anaesthesiol. 2009 Apr;22(2):143-9. doi: 10.1097/ACO.0b013e328328d1cc.
8
Mechanisms and treatment of organ failure in sepsis.
Nat Rev Nephrol. 2018 Jul;14(7):417-427. doi: 10.1038/s41581-018-0005-7.
9
Cellular processes in sepsis.
Swiss Med Wkly. 2008 Nov 1;138(43-44):629-34. doi: 10.4414/smw.2008.12319.
10
Sepsis, mitochondrial failure and multiple organ dysfunction.
Clin Invest Med. 2014 Apr 1;37(2):E58-69. doi: 10.25011/cim.v37i2.21087.

引用本文的文献

2
Drp1-associated genes implicated in sepsis survival.
Front Immunol. 2025 Jan 8;15:1516145. doi: 10.3389/fimmu.2024.1516145. eCollection 2024.
3
Predictive gene expression signature diagnoses neonatal sepsis before clinical presentation.
EBioMedicine. 2024 Dec;110:105411. doi: 10.1016/j.ebiom.2024.105411. Epub 2024 Oct 28.
4
5
A pilot study of mitochondrial response to an in vivo prosthetic joint Staphylococcus aureus infection model.
J Orthop Res. 2024 Mar;42(3):539-546. doi: 10.1002/jor.25696. Epub 2023 Oct 17.
6
Sepsis-induced mitochondrial dysfunction: A narrative review.
World J Crit Care Med. 2023 Jun 9;12(3):139-152. doi: 10.5492/wjccm.v12.i3.139.
7
Roles of DNA damage in renal tubular epithelial cells injury.
Front Physiol. 2023 Apr 6;14:1162546. doi: 10.3389/fphys.2023.1162546. eCollection 2023.
8
Basic research and clinical progress of sepsis-associated encephalopathy.
J Intensive Med. 2021 Sep 24;1(2):90-95. doi: 10.1016/j.jointm.2021.08.002. eCollection 2021 Oct.
9
The Effect of Sepsis on Myocardial Function: A Review of Pathophysiology, Diagnostic Criteria, and Treatment.
Cureus. 2022 Jun 21;14(6):e26178. doi: 10.7759/cureus.26178. eCollection 2022 Jun.

本文引用的文献

1
Nitric oxide during ischemia attenuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes.
Free Radic Biol Med. 2007 Aug 15;43(4):590-9. doi: 10.1016/j.freeradbiomed.2007.05.017. Epub 2007 May 18.
3
Mitochondrial nitric oxide in the signaling of cell integrated responses.
Am J Physiol Cell Physiol. 2007 May;292(5):C1569-80. doi: 10.1152/ajpcell.00248.2006.
4
Nitric oxide and mitochondrial respiration in the heart.
Cardiovasc Res. 2007 Jul 15;75(2):283-90. doi: 10.1016/j.cardiores.2007.03.022. Epub 2007 Apr 3.
5
Mechanisms of sepsis-induced cardiac dysfunction.
Crit Care Med. 2007 Jun;35(6):1599-608. doi: 10.1097/01.CCM.0000266683.64081.02.
7
Blockade of apoptosis as a rational therapeutic strategy for the treatment of sepsis.
Novartis Found Symp. 2007;280:37-49; discussion 49-52, 160-4. doi: 10.1002/9780470059593.ch4.
8
Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice.
FEBS J. 2007 Apr;274(8):2135-47. doi: 10.1111/j.1742-4658.2007.05755.x. Epub 2007 Mar 20.
9
Survival of TNF toxicity: dependence on caspases and NO.
Arch Biochem Biophys. 2007 Jun 15;462(2):132-9. doi: 10.1016/j.abb.2007.01.021. Epub 2007 Feb 8.
10
Apoptotic signaling induces hyperpermeability following hemorrhagic shock.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H3179-89. doi: 10.1152/ajpheart.01337.2006. Epub 2007 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验