Zhang Qiang, Gross Michael L
Department of Chemistry, Washington UniVersity, Box 1134, 1 Brookings DriVe, St. Louis, Missouri 63130, USA.
Chem Res Toxicol. 2008 Jun;21(6):1244-52. doi: 10.1021/tx800067s. Epub 2008 May 31.
Estrogens are metabolized to active quinones that modify DNA and may lead to various cancers. To extend the analytical methodology for estrogen-modified purine bases, we report here a simple modification to existing synthetic procedures that use 2-iodoxybenzoic acid (IBX) as the oxidizing agent for the reference material and putative biomarker, 4-hydroxyestrone-1-N3adenine (4-OH-E1-1-N3Ade). The reaction leads to two catechol estrogen quinones, CE1-2,3-Q and CE1-3,4-Q, both of which react via Michael additions to afford 4-OH-E1-1-N3Ade and other DNA adducts. Liquid chromatography separation permits the isolation of high-purity 4-OH-E1-1-N3Ade. With this method, we also prepared single 13C and uniformly 15N (U-15N) labeled 4-OH-E1-1-N3Ade with 8-13C-labeled Ade and U-15N-labeled adenosine 5'-monophosphate (AMP). The approach is also effective for the synthesis of 4-hydroxyestradiol-1-N3adenine, 4-OH-E2-1-N3Ade, and 4-hydroxyestrone(estradiol)-1-N7guanine, 4-OH-E1(E2)-1-N7Gua. The tandem mass spectra (MS2 and MS3) of 4-OH-E1-(unlabeled, 8-13C-, and U-15N-labeled)1-N3Ade and accurate mass measurements for MS2 product ions allow us to assign unambiguously the formula of fragments and delineate the fragmentation pathways. One important reaction is dehydration, which occurs at the ketone oxygen in the C-17 position of estrone. Another is loss of NH3, an ubiquitous process for purines and modified purines, which is affected by the steroid modification. Evidence from MS/MS supports the migration of H-atom(s) from estrone in the loss of NH3. An interesting interaction occurs between the steroid and the Ade in the modified base, promoting loss of CH2NH, a loss that distinguishes modified Ade from unmodified Ade. The synthesis of a stable isotope-labeled 4-OH-E1-1-N3Ade and the understanding of the fragmentation processes will enable studies aimed at the etection of naturally occurring 4-OH-E1-1-N3Ade in biological samples.
雌激素代谢生成的活性醌类物质可修饰DNA并可能引发多种癌症。为拓展雌激素修饰嘌呤碱基的分析方法,我们在此报告对现有合成程序的一项简单改进,该程序使用2-碘酰基苯甲酸(IBX)作为参考物质及假定生物标志物4-羟基雌酮-1-N3腺嘌呤(4-OH-E1-1-N3Ade)的氧化剂。该反应生成两种儿茶酚雌激素醌,即CE1-2,3-Q和CE1-3,4-Q,二者均通过迈克尔加成反应生成4-OH-E1-1-N3Ade及其他DNA加合物。液相色谱分离可分离出高纯度的4-OH-E1-1-N3Ade。利用此方法,我们还制备了单13C和均匀15N(U-15N)标记的4-OH-E1-1-N3Ade,分别使用8-13C标记的腺嘌呤(Ade)和U-15N标记的腺苷5'-单磷酸(AMP)。该方法对合成4-羟基雌二醇-1-N3腺嘌呤(4-OH-E2-1-N3Ade)以及4-羟基雌酮(雌二醇)-1-N7鸟嘌呤(4-OH-E1(E2)-1-N7Gua)同样有效。4-OH-E1-(未标记、8-13C-和U-15N-标记)1-N3Ade的串联质谱(MS2和MS3)以及MS₂产物离子的精确质量测量,使我们能够明确确定碎片的分子式并描绘出碎裂途径。一个重要反应是脱水,它发生在雌酮C-17位的酮氧处。另一个是NH₃的丢失,这是嘌呤和修饰嘌呤普遍存在的过程,受类固醇修饰的影响。MS/MS的证据支持在NH₃丢失过程中氢原子从雌酮迁移。在修饰碱基中,类固醇与腺嘌呤之间发生了有趣的相互作用,促使CH₂NH丢失,这种丢失将修饰的腺嘌呤与未修饰的腺嘌呤区分开来。稳定同位素标记的4-OH-E1-1-N3Ade的合成以及对碎裂过程的理解,将有助于开展旨在检测生物样品中天然存在的4-OH-E1-1-N3Ade的研究。