Cooper Valentino R, Thonhauser T, Langreth David C
Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Rd., Piscataway, New Jersey 08854-8019, USA.
J Chem Phys. 2008 May 28;128(20):204102. doi: 10.1063/1.2924133.
We apply the van der Waals density functional (vdW-DF) to study hydrogen bonding and stacking interactions between nucleobases. The excellent agreement of our results with high level quantum chemical calculations highlights the value of the vdW-DF for first-principles investigations of biologically important molecules. Our results suggest that, in the case of hydrogen-bonded nucleobase pairs, dispersion interactions reduce the cost of propeller twists while having a negligible effect on buckling. Furthermore, the efficient scaling of DFT methods allowed for the easy optimization of separation distance between nucleobase stacks, indicating enhancements in the interaction energy of up to 3 kcalmol over previous fixed distance calculations. We anticipate that these results are significant for extending the vdW-DF method to model larger vdW complexes and biological molecules.
我们应用范德华密度泛函(vdW-DF)来研究核碱基之间的氢键和堆积相互作用。我们的结果与高水平量子化学计算的出色吻合突出了vdW-DF在对生物学重要分子进行第一性原理研究中的价值。我们的结果表明,在氢键连接的核碱基对的情况下,色散相互作用降低了螺旋扭转的成本,而对弯曲的影响可忽略不计。此外,密度泛函理论(DFT)方法的有效标度使得核碱基堆积之间的分离距离易于优化,这表明与之前的固定距离计算相比,相互作用能增强了高达3千卡/摩尔。我们预计这些结果对于将vdW-DF方法扩展到更大的范德华复合物和生物分子建模具有重要意义。