Knauf Claude, Cani Patrice D, Kim Dong-Hoon, Iglesias Miguel A, Chabo Chantal, Waget Aurélie, Colom André, Rastrelli Sophie, Delzenne Nathalie M, Drucker Daniel J, Seeley Randy J, Burcelin Remy
Institut de Medecine Moleculaire de Rangueil, Institut National de la Santé et de la Recherche Médicale U858, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France.
Diabetes. 2008 Oct;57(10):2603-12. doi: 10.2337/db07-1788. Epub 2008 Jun 2.
Ingested glucose is detected by specialized sensors in the enteric/hepatoportal vein, which send neural signals to the brain, which in turn regulates key peripheral tissues. Hence, impairment in the control of enteric-neural glucose sensing could contribute to disordered glucose homeostasis. The aim of this study was to determine the cells in the brain targeted by the activation of the enteric glucose-sensing system.
We selectively activated the axis in mice using a low-rate intragastric glucose infusion in wild-type and glucagon-like peptide-1 (GLP-1) receptor knockout mice, neuropeptide Y-and proopiomelanocortin-green fluorescent protein-expressing mice, and high-fat diet diabetic mice. We quantified the whole-body glucose utilization rate and the pattern of c-Fos positive in the brain.
Enteric glucose increased muscle glycogen synthesis by 30% and regulates c-Fos expression in the brainstem and the hypothalamus. Moreover, the synthesis of muscle glycogen was diminished after central infusion of the GLP-1 receptor (GLP-1Rc) antagonist Exendin 9-39 and abolished in GLP-1Rc knockout mice. Gut-glucose-sensitive c-Fos-positive cells of the arcuate nucleus colocalized with neuropeptide Y-positive neurons but not with proopiomelanocortin-positive neurons. Furthermore, high-fat feeding prevented the enteric activation of c-Fos expression.
We conclude that the gut-glucose sensor modulates peripheral glucose metabolism through a nutrient-sensitive mechanism, which requires brain GLP-1Rc signaling and is impaired during diabetes.
摄入的葡萄糖由肠/肝门静脉中的特殊传感器检测,这些传感器向大脑发送神经信号,大脑进而调节关键的外周组织。因此,肠神经葡萄糖传感控制的受损可能导致葡萄糖稳态紊乱。本研究的目的是确定肠葡萄糖传感系统激活所靶向的大脑细胞。
我们在野生型和胰高血糖素样肽-1(GLP-1)受体敲除小鼠、表达神经肽Y和阿黑皮素原-绿色荧光蛋白的小鼠以及高脂饮食糖尿病小鼠中,通过低速率胃内输注葡萄糖选择性激活该轴。我们量化了全身葡萄糖利用率和大脑中c-Fos阳性的模式。
肠葡萄糖使肌肉糖原合成增加30%,并调节脑干和下丘脑的c-Fos表达。此外,中枢注射GLP-1受体(GLP-1Rc)拮抗剂艾塞那肽9-39后,肌肉糖原合成减少,在GLP-1Rc敲除小鼠中则被消除。弓状核的肠葡萄糖敏感c-Fos阳性细胞与神经肽Y阳性神经元共定位,但与阿黑皮素原阳性神经元不共定位。此外,高脂喂养可阻止肠对c-Fos表达的激活。
我们得出结论,肠葡萄糖传感器通过一种营养敏感机制调节外周葡萄糖代谢,这需要大脑GLP-1Rc信号传导,且在糖尿病期间受损。