Sperling Edit, Bunner Anne E, Sykes Michael T, Williamson James R
Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
Anal Chem. 2008 Jul 1;80(13):4906-17. doi: 10.1021/ac800080v. Epub 2008 Jun 4.
Quantitative proteomic mass spectrometry involves comparison of the amplitudes of peaks resulting from different isotope labeling patterns, including fractional atomic labeling and fractional residue labeling. We have developed a general and flexible analytical treatment of the complex isotope distributions that arise in these experiments, using Fourier transform convolution to calculate labeled isotope distributions and least-squares for quantitative comparison with experimental peaks. The degree of fractional atomic and fractional residue labeling can be determined from experimental peaks at the same time as the integrated intensity of all of the isotopomers in the isotope distribution. The approach is illustrated using data with fractional (15)N-labeling and fractional (13)C-isoleucine labeling. The least-squares Fourier transform convolution approach can be applied to many types of quantitative proteomic data, including data from stable isotope labeling by amino acids in cell culture and pulse labeling experiments.
定量蛋白质组质谱分析涉及比较不同同位素标记模式产生的峰的幅度,包括原子分数标记和残基分数标记。我们已经开发了一种通用且灵活的分析方法来处理这些实验中出现的复杂同位素分布,使用傅里叶变换卷积来计算标记的同位素分布,并使用最小二乘法与实验峰进行定量比较。原子分数和残基分数标记的程度可以与同位素分布中所有同位素异构体的积分强度同时从实验峰中确定。使用(15)N分数标记和(13)C异亮氨酸分数标记的数据说明了该方法。最小二乘傅里叶变换卷积方法可应用于多种类型的定量蛋白质组数据,包括细胞培养中氨基酸稳定同位素标记和脉冲标记实验的数据。