Suppr超能文献

用于研究剪切应力对心血管组织影响的体外培养系统的设计。

Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue.

作者信息

Sucosky Philippe, Padala Muralidhar, Elhammali Adnan, Balachandran Kartik, Jo Hanjoong, Yoganathan Ajit P

机构信息

Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Parker H Petit Biotechnology Building, Atlanta, GA 30332-0363, USA.

出版信息

J Biomech Eng. 2008 Jun;130(3):035001. doi: 10.1115/1.2907753.

Abstract

Mechanical forces are known to affect the biomechanical properties of native and engineered cardiovascular tissue. In particular, shear stress that results from the relative motion of heart valve leaflets with respect to the blood flow is one important component of their mechanical environment in vivo. Although different types of bioreactors have been designed to subject cells to shear stress, devices to expose biological tissue are few. In an effort to address this issue, the aim of this study was to design an ex vivo tissue culture system to characterize the biological response of heart valve leaflets subjected to a well-defined steady or time-varying shear stress environment. The novel apparatus was designed based on a cone-and-plate viscometer. The device characteristics were defined to limit the secondary flow effects inherent to this particular geometry. The determination of the operating conditions producing the desired shear stress profile was streamlined using a computational fluid dynamic (CFD) model validated with laser Doppler velocimetry. The novel ex vivo tissue culture system was validated in terms of its capability to reproduce a desired cone rotation and to maintain sterile conditions. The CFD results demonstrated that a cone angle of 0.5 deg, a cone radius of 40 mm, and a gap of 0.2 mm between the cone apex and the plate could limit radial secondary flow effects. The novel cone-and-plate permits to expose nine tissue specimens to an identical shear stress waveform. The whole setup is capable of accommodating four cone-and-plate systems, thus concomitantly subjecting 36 tissue samples to desired shear stress condition. The innovative design enables the tissue specimens to be flush mounted in the plate in order to limit flow perturbations caused by the tissue thickness. The device is capable of producing shear stress rates of up to 650 dyn cm(-2) s(-1) (i.e., maximum shear stress rate experienced by the ventricular surface of an aortic valve leaflet) and was shown to maintain tissue under sterile conditions for 120 h. The novel ex vivo tissue culture system constitutes a valuable tool toward elucidating heart valve mechanobiology. Ultimately, this knowledge will permit the production of functional tissue engineered heart valves, and a better understanding of heart valve biology and disease progression.

摘要

已知机械力会影响天然和工程化心血管组织的生物力学特性。特别是,心脏瓣膜小叶相对于血流的相对运动所产生的剪切应力是其体内力学环境的一个重要组成部分。尽管已经设计了不同类型的生物反应器使细胞受到剪切应力作用,但用于使生物组织暴露于剪切应力的装置却很少。为了解决这个问题,本研究的目的是设计一种体外组织培养系统,以表征心脏瓣膜小叶在明确的稳定或随时间变化的剪切应力环境下的生物学反应。这种新型装置是基于锥板粘度计设计的。定义了该装置的特性以限制这种特定几何形状固有的二次流效应。使用经激光多普勒测速仪验证的计算流体动力学(CFD)模型简化了产生所需剪切应力分布的操作条件的确定过程。这种新型体外组织培养系统在再现所需锥旋转和维持无菌条件的能力方面得到了验证。CFD结果表明,0.5度的锥角、40毫米的锥半径以及锥顶与平板之间0.2毫米的间隙可以限制径向二次流效应。这种新型锥板允许将九个组织样本暴露于相同的剪切应力波形下。整个装置能够容纳四个锥板系统,从而可使36个组织样本同时处于所需的剪切应力条件下。这种创新设计使组织样本能够平齐安装在平板中,以限制由组织厚度引起的流动扰动。该装置能够产生高达650达因·厘米⁻²·秒⁻¹的剪切应力变化率(即主动脉瓣小叶心室表面所经历的最大剪切应力变化率),并已证明能够在无菌条件下将组织维持120小时。这种新型体外组织培养系统是阐明心脏瓣膜力学生物学的一个有价值的工具。最终,这些知识将有助于生产功能性组织工程心脏瓣膜,并更好地理解心脏瓣膜生物学和疾病进展情况。

相似文献

2
A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology.
Ann Biomed Eng. 2008 May;36(5):700-12. doi: 10.1007/s10439-008-9447-6. Epub 2008 Feb 6.
4
Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):231-44. doi: 10.1007/s10237-011-0306-2. Epub 2011 Apr 5.
5
Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):171-82. doi: 10.1007/s10237-011-0301-7. Epub 2011 Mar 18.
6
Design and Computational Validation of a Novel Bioreactor for Conditioning Vascular Tissue to Time-Varying Multidirectional Fluid Shear Stress.
Cardiovasc Eng Technol. 2019 Sep;10(3):531-542. doi: 10.1007/s13239-019-00426-1. Epub 2019 Jul 15.
7
Computational simulations predict a key role for oscillatory fluid shear stress in de novo valvular tissue formation.
J Biomech. 2014 Nov 7;47(14):3517-23. doi: 10.1016/j.jbiomech.2014.08.028. Epub 2014 Sep 16.
9
Design and validation of a novel bioreactor to subject aortic valve leaflets to side-specific shear stress.
Ann Biomed Eng. 2011 Aug;39(8):2174-85. doi: 10.1007/s10439-011-0305-6. Epub 2011 Apr 1.
10
Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves.
Ann Biomed Eng. 2004 Aug;32(8):1039-49. doi: 10.1114/b:abme.0000036640.11387.4b.

引用本文的文献

2
Shear Stress Conditioning Promotes a Pro-Inflammatory Response in Porcine Endocardial Endothelial Cells.
bioRxiv. 2025 Feb 8:2025.02.03.636291. doi: 10.1101/2025.02.03.636291.
3
Modular cone-and-plate device for mechanofluidic assays in Transwell inserts.
Front Bioeng Biotechnol. 2025 Jan 27;13:1494553. doi: 10.3389/fbioe.2025.1494553. eCollection 2025.
6
Atherogenic potential of microgravity hemodynamics in the carotid bifurcation: a numerical investigation.
NPJ Microgravity. 2022 Sep 9;8(1):39. doi: 10.1038/s41526-022-00223-6.
7
Hemocompatibile Thin Films Assessed under Blood Flow Shear Forces.
Molecules. 2022 Sep 4;27(17):5696. doi: 10.3390/molecules27175696.
8
In Vitro Flow Chamber Design for the Study of Endothelial Cell (Patho)Physiology.
J Biomech Eng. 2022 Feb 1;144(2). doi: 10.1115/1.4051765.
9
Computational Assessment of Valvular Dysfunction in Discrete Subaortic Stenosis: A Parametric Study.
Cardiovasc Eng Technol. 2021 Dec;12(6):559-575. doi: 10.1007/s13239-020-00513-8. Epub 2021 Jan 11.

本文引用的文献

2
An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch.
Ann Biomed Eng. 2006 Nov;34(11):1655-65. doi: 10.1007/s10439-006-9167-8. Epub 2006 Oct 10.
3
Role of NADPH oxidases in disturbed flow- and BMP4- induced inflammation and atherosclerosis.
Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1609-19. doi: 10.1089/ars.2006.8.1609.
6
Design of a sterile organ culture system for the ex vivo study of aortic heart valves.
J Biomech Eng. 2005 Oct;127(5):857-61. doi: 10.1115/1.1992535.
7
Oscillatory flow in a cone-and-plate bioreactor.
J Biomech Eng. 2005 Aug;127(4):601-10. doi: 10.1115/1.1933964.
10
Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14871-6. doi: 10.1073/pnas.0406073101. Epub 2004 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验