Suppr超能文献

主动脉-室间隔角异常和孤立性主动脉瓣下狭窄对左心室流出道血流动力学的影响:初步计算评估

Impact of Aortoseptal Angle Abnormalities and Discrete Subaortic Stenosis on Left-Ventricular Outflow Tract Hemodynamics: Preliminary Computational Assessment.

作者信息

Shar Jason A, Brown Kathleen N, Keswani Sundeep G, Grande-Allen Jane, Sucosky Philippe

机构信息

Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States.

Department of Bioengineering, Rice University, Houston, TX, United States.

出版信息

Front Bioeng Biotechnol. 2020 Feb 27;8:114. doi: 10.3389/fbioe.2020.00114. eCollection 2020.

Abstract

Discrete subaortic stenosis (DSS) is an obstruction of the left ventricular outflow tract (LVOT) due to the formation of a fibromuscular membrane upstream of the aortic valve. DSS is a major risk factor for aortic regurgitation (AR), which often persists after surgical resection of the membrane. While the etiology of DSS and secondary AR is largely unknown, the frequent association between DSS and aortoseptal angle (AoSA) abnormalities has supported the emergence of a mechanobiological pathway by which hemodynamic stress alterations on the septal wall could trigger a biological cascade leading to fibrosis and membrane formation. The resulting LVOT flow disturbances could activate the valve endothelium and contribute to AR. In an effort to assess this hypothetical mechano-etiology, this study aimed at isolating computationally the effects of AoSA abnormalities on septal wall shear stress (WSS), and the impact of DSS on LVOT hemodynamics. Two-dimensional computational fluid dynamics models featuring a normal AoSA (N-LV), a steep AoSA (S-LV), and a steep AoSA with a DSS lesion (DSS-LV) were designed to compute the flow in patient-specific left ventricles (LVs). Boundary conditions consisted of transient velocity profiles at the mitral inlet and LVOT outlet, and patient-specific LV wall motion. The deformation of the DSS lesion was computed using a two-way fluid-structure interaction modeling strategy. Turbulence was accounted for via implementation of the - turbulence model. While the N-LV and S-LV models generated similar LVOT flow characteristics, the DSS-LV model resulted in an asymmetric LVOT jet-like structure, subaortic stenotic conditions (up to 2.4-fold increase in peak velocity, 45% reduction in effective jet diameter vs. N-LV/S-LV), increased vorticity (2.8-fold increase) and turbulence (5- and 3-order-of-magnitude increase in turbulent kinetic energy and Reynolds shear stress, respectively). The steep AoSA subjected the septal wall to a 23% and 69% overload in temporal shear magnitude and gradient, respectively, without any substantial change in oscillatory shear index. This study reveals the existence of WSS overloads on septal wall regions prone to DSS lesion formation in steep LVOTs, and the development of highly turbulent, stenotic and asymmetric flow in DSS LVOTs, which support a possible mechano etiology for DSS and secondary AR.

摘要

离散性主动脉瓣下狭窄(DSS)是由于在主动脉瓣上游形成纤维肌性膜而导致的左心室流出道(LVOT)梗阻。DSS是主动脉瓣反流(AR)的主要危险因素,在手术切除该膜后AR常常持续存在。虽然DSS和继发性AR的病因在很大程度上尚不清楚,但DSS与主动脉-室间隔角(AoSA)异常之间的频繁关联支持了一种机械生物学途径的出现,即室间隔壁上的血流动力学应力改变可能引发导致纤维化和膜形成的生物学级联反应。由此产生的LVOT血流紊乱可激活瓣膜内皮并导致AR。为了评估这种假设的机械病因,本研究旨在通过计算分离AoSA异常对室间隔壁剪应力(WSS)的影响以及DSS对LVOT血流动力学的影响。设计了具有正常AoSA(N-LV)、陡峭AoSA(S-LV)和伴有DSS病变的陡峭AoSA(DSS-LV)的二维计算流体动力学模型,以计算特定患者左心室(LV)中的血流。边界条件包括二尖瓣入口和LVOT出口处的瞬态速度剖面以及特定患者的LV壁运动。使用双向流固耦合建模策略计算DSS病变的变形。通过实施 - 湍流模型来考虑湍流。虽然N-LV和S-LV模型产生了相似的LVOT血流特征,但DSS-LV模型导致了不对称的LVOT喷射样结构、主动脉瓣下狭窄情况(峰值速度增加高达2.4倍,有效射流直径比N-LV/S-LV减小45%)、涡度增加(增加2.8倍)和湍流增加(湍流动能和雷诺剪应力分别增加5个和3个数量级)。陡峭的AoSA使室间隔壁在时间剪应力大小和梯度上分别承受23%和69%的过载,而振荡剪应力指数没有任何实质性变化。本研究揭示了在陡峭LVOT中易于形成DSS病变的室间隔壁区域存在WSS过载,以及DSS LVOT中高度湍流、狭窄和不对称血流的发展,这支持了DSS和继发性AR可能的机械病因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee8/7056880/a6ef16633d57/fbioe-08-00114-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验