Chavarria Daniel, Georges Kissamy A, O'Grady Brian J, Hassan Khalid K, Lippmann Ethan S
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States.
Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States.
Front Bioeng Biotechnol. 2025 Jan 27;13:1494553. doi: 10.3389/fbioe.2025.1494553. eCollection 2025.
In this work, we present a cost effective and open-source modular cone-and-plate (MoCAP) device that incorporates shear stress in the popular Transwell insert system. This system acts as a lid that incorporates flow into 24-well Transwell inserts while preserving the ability to conduct molecular profiling assays. Moreover, the MoCAP device can be rapidly reconfigured to test multiple shear stress profiles within a single device. To demonstrate the utility of the MoCAP, we conducted select assays on several different brain microvascular endothelial cell (BMEC) lines that comprise models of the blood-brain barrier (BBB), since shear stress can play an important role in BBB function. Our results characterize how shear stress modulates passive barrier function and GLUT1 expression across the different BMEC lines. Overall, we anticipate this low cost mechanofluidic device will be useful to the mechanobiology community.
在这项工作中,我们展示了一种经济高效的开源模块化锥板(MoCAP)装置,该装置将剪切应力整合到广为人知的Transwell插入系统中。该系统就像一个盖子,在将流动整合到24孔Transwell插入物中的同时,还保留了进行分子谱分析的能力。此外,MoCAP装置可以快速重新配置,以在单个装置内测试多种剪切应力分布。为了证明MoCAP的实用性,我们对几种不同的脑微血管内皮细胞(BMEC)系进行了选定的分析,这些细胞系构成了血脑屏障(BBB)的模型,因为剪切应力在BBB功能中可能起重要作用。我们的结果描述了剪切应力如何调节不同BMEC系中的被动屏障功能和GLUT1表达。总体而言,我们预计这种低成本的机械流体装置将对力学生物学领域有用。