Suppr超能文献

利用遗传算法识别视神经乳头。

Identification of the optic nerve head with genetic algorithms.

作者信息

Carmona Enrique J, Rincón Mariano, García-Feijoó Julián, Martínez-de-la-Casa José M

机构信息

Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingeniería Informática, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain.

出版信息

Artif Intell Med. 2008 Jul;43(3):243-59. doi: 10.1016/j.artmed.2008.04.005. Epub 2008 Jun 4.

Abstract

OBJECTIVE

This work proposes creating an automatic system to locate and segment the optic nerve head (ONH) in eye fundus photographic images using genetic algorithms.

METHODS AND MATERIAL

Domain knowledge is used to create a set of heuristics that guide the various steps involved in the process. Initially, using an eye fundus colour image as input, a set of hypothesis points was obtained that exhibited geometric properties and intensity levels similar to the ONH contour pixels. Next, a genetic algorithm was used to find an ellipse containing the maximum number of hypothesis points in an offset of its perimeter, considering some constraints. The ellipse thus obtained is the approximation to the ONH. The segmentation method is tested in a sample of 110 eye fundus images, belonging to 55 patients with glaucoma (23.1%) and eye hypertension (76.9%) and random selected from an eye fundus image base belonging to the Ophthalmology Service at Miguel Servet Hospital, Saragossa (Spain).

RESULTS AND CONCLUSIONS

The results obtained are competitive with those in the literature. The method's generalization capability is reinforced when it is applied to a different image base from the one used in our study and a discrepancy curve is obtained very similar to the one obtained in our image base. In addition, the robustness of the method proposed can be seen in the high percentage of images obtained with a discrepancy delta<5 (96% and 99% in our and a different image base, respectively). The results also confirm the hypothesis that the ONH contour can be properly approached with a non-deformable ellipse. Another important aspect of the method is that it directly provides the parameters characterising the shape of the papilla: lengths of its major and minor axes, its centre of location and its orientation with regard to the horizontal position.

摘要

目的

本研究提出使用遗传算法创建一个自动系统,用于在眼底摄影图像中定位和分割视神经乳头(ONH)。

方法和材料

利用领域知识创建了一组启发式方法,以指导该过程中涉及的各个步骤。最初,以眼底彩色图像作为输入,获得一组假设点,这些点表现出与ONH轮廓像素相似的几何特性和强度水平。接下来,使用遗传算法在其周长偏移范围内找到包含最大数量假设点的椭圆,并考虑一些约束条件。由此获得的椭圆即为ONH的近似。该分割方法在110张眼底图像样本中进行了测试,这些图像来自西班牙萨拉戈萨米格尔·塞尔韦特医院眼科服务部的眼底图像库,随机选取了55例青光眼患者(23.1%)和高眼压患者(76.9%)。

结果与结论

所得结果与文献中的结果具有竞争力。当该方法应用于与我们研究中使用的不同图像库时,其泛化能力得到增强,并且获得的差异曲线与我们图像库中获得的曲线非常相似。此外,所提出方法的稳健性体现在差异增量<5的图像百分比很高(我们的图像库和不同图像库中分别为96%和99%)。结果还证实了可以用不可变形椭圆正确逼近ONH轮廓的假设。该方法的另一个重要方面是它直接提供了表征乳头形状的参数:其长轴和短轴的长度、其位置中心以及相对于水平位置的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验