Suppr超能文献

多分辨率级联注意力 U-Net 用于眼底图像中视盘和黄斑的定位和分割。

Multiresolution cascaded attention U-Net for localization and segmentation of optic disc and fovea in fundus images.

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology, 620015, Tiruchirappalli, Tamilnadu, India.

出版信息

Sci Rep. 2024 Oct 4;14(1):23107. doi: 10.1038/s41598-024-73493-7.

Abstract

Identification of retinal diseases in automated screening methods, such as those used in clinical settings or computer-aided diagnosis, usually depends on the localization and segmentation of the Optic Disc (OD) and fovea. However, this task is difficult since these anatomical features have irregular spatial, texture, and shape characteristics, limited sample sizes, and domain shifts due to different data distributions across datasets. This study proposes a novel Multiresolution Cascaded Attention U-Net (MCAU-Net) model that addresses these problems by optimally balancing receptive field size and computational efficiency. The MCAU-Net utilizes two skip connections to accurately localize and segment the OD and fovea in fundus images. We incorporated a Multiresolution Wavelet Pooling Module (MWPM) into the CNN at each stage of U-Net input to compensate for spatial information loss. Additionally, we integrated a cascaded connection of the spatial and channel attentions as a skip connection in MCAU-Net to concentrate precisely on the target object and improve model convergence for segmenting and localizing OD and fovea centers. The proposed model has a low parameter count of 0.8 million, improving computational efficiency and reducing the risk of overfitting. For OD segmentation, the MCAU-Net achieves high IoU values of 0.9771, 0.945, and 0.946 for the DRISHTI-GS, DRIONS-DB, and IDRiD datasets, respectively, outperforming previous results for all three datasets. For the IDRiD dataset, the MCAU-Net locates the OD center with an Euclidean Distance (ED) of 16.90 pixels and the fovea center with an ED of 33.45 pixels, demonstrating its effectiveness in overcoming the common limitations of state-of-the-art methods.

摘要

在自动化筛查方法(如临床环境或计算机辅助诊断中使用的方法)中识别视网膜疾病通常依赖于视盘(OD)和黄斑的定位和分割。然而,由于不同数据集之间的数据分布不同,因此这些解剖特征具有不规则的空间、纹理和形状特征、有限的样本量以及领域转移,因此这项任务具有挑战性。本研究提出了一种新颖的多分辨率级联注意力 U-Net(MCAU-Net)模型,通过优化接收域大小和计算效率来解决这些问题。MCAU-Net 使用两个跳过连接来准确地定位和分割眼底图像中的 OD 和黄斑。我们在 U-Net 输入的每个阶段都将多分辨率小波池化模块(MWPM)合并到 CNN 中,以补偿空间信息的丢失。此外,我们将空间和通道注意力的级联连接作为 MCAU-Net 中的跳过连接集成,以精确地关注目标对象,并提高用于分割和定位 OD 和黄斑中心的模型收敛性。所提出的模型参数计数低至 0.8 百万,提高了计算效率并降低了过拟合的风险。对于 OD 分割,MCAU-Net 在 DRISHTI-GS、DRIONS-DB 和 IDRiD 数据集上的 IoU 值分别高达 0.9771、0.945 和 0.946,在所有三个数据集上的表现均优于以往的结果。对于 IDRiD 数据集,MCAU-Net 以 16.90 像素的欧几里得距离(ED)定位 OD 中心,以 33.45 像素的 ED 定位黄斑中心,证明其在克服现有方法的常见限制方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f46/11452642/7b9e6b054959/41598_2024_73493_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验