Hall Catherine N, Attwell David
Department of Physiology, University College London, Gower St, London WC1E 6BT, UK.
J Physiol. 2008 Aug 1;586(15):3597-615. doi: 10.1113/jphysiol.2008.154724. Epub 2008 Jun 5.
Low nanomolar concentrations of nitric oxide activate guanylyl cyclase to produce cGMP, which has diverse physiological effects. Higher concentrations inhibit mitochondrial respiration at cytochrome c oxidase and this has been proposed to be important physiologically, increasing oxygen permeation into tissue (by reducing the oxygen use of cells near blood vessels), activating AMP kinase, and regulating the relationship between cerebral blood flow and oxygen use. It is unclear, however, whether nitric oxide can accumulate physiologically to concentrations at which inhibition of respiration occurs. In rat cerebellar slices, we activated nitric oxide production from each isoform of nitric oxide synthase. Only activation of inducible nitric oxide synthase, which is expressed pathologically, caused any significant inhibition of respiration. Modelling oxygen and nitric oxide concentrations predicted that, in vivo, physiological nitric oxide levels are too low to affect respiration. Even pathologically, the nitric oxide concentration may only rise to 2.5 nm, producing a 1.5% inhibition of respiration. Thus, under physiological conditions, nitric oxide signals do not inhibit respiration but are well-tuned to the dynamic range of guanylyl cyclase activation.
低纳摩尔浓度的一氧化氮可激活鸟苷酸环化酶以产生环磷酸鸟苷(cGMP),cGMP具有多种生理效应。较高浓度的一氧化氮会抑制细胞色素c氧化酶处的线粒体呼吸,并且有人认为这在生理上很重要,可增加氧气向组织中的渗透(通过减少血管附近细胞的氧气消耗)、激活AMP激酶以及调节脑血流量与氧气消耗之间的关系。然而,尚不清楚一氧化氮在生理上是否能积累到发生呼吸抑制的浓度。在大鼠小脑切片中,我们激活了一氧化氮合酶各同工型产生一氧化氮。只有病理性表达的诱导型一氧化氮合酶的激活才会对呼吸产生任何显著抑制。对氧气和一氧化氮浓度进行建模预测,在体内,生理状态下的一氧化氮水平过低,无法影响呼吸。即使在病理状态下,一氧化氮浓度可能也只会升至2.5纳摩尔,导致呼吸抑制1.5%。因此,在生理条件下,一氧化氮信号不会抑制呼吸,而是能很好地调节至鸟苷酸环化酶激活的动态范围。