Suppr超能文献

评估脑组织中一氧化氮的生理浓度和靶点。

Assessing the physiological concentration and targets of nitric oxide in brain tissue.

作者信息

Hall Catherine N, Attwell David

机构信息

Department of Physiology, University College London, Gower St, London WC1E 6BT, UK.

出版信息

J Physiol. 2008 Aug 1;586(15):3597-615. doi: 10.1113/jphysiol.2008.154724. Epub 2008 Jun 5.

Abstract

Low nanomolar concentrations of nitric oxide activate guanylyl cyclase to produce cGMP, which has diverse physiological effects. Higher concentrations inhibit mitochondrial respiration at cytochrome c oxidase and this has been proposed to be important physiologically, increasing oxygen permeation into tissue (by reducing the oxygen use of cells near blood vessels), activating AMP kinase, and regulating the relationship between cerebral blood flow and oxygen use. It is unclear, however, whether nitric oxide can accumulate physiologically to concentrations at which inhibition of respiration occurs. In rat cerebellar slices, we activated nitric oxide production from each isoform of nitric oxide synthase. Only activation of inducible nitric oxide synthase, which is expressed pathologically, caused any significant inhibition of respiration. Modelling oxygen and nitric oxide concentrations predicted that, in vivo, physiological nitric oxide levels are too low to affect respiration. Even pathologically, the nitric oxide concentration may only rise to 2.5 nm, producing a 1.5% inhibition of respiration. Thus, under physiological conditions, nitric oxide signals do not inhibit respiration but are well-tuned to the dynamic range of guanylyl cyclase activation.

摘要

低纳摩尔浓度的一氧化氮可激活鸟苷酸环化酶以产生环磷酸鸟苷(cGMP),cGMP具有多种生理效应。较高浓度的一氧化氮会抑制细胞色素c氧化酶处的线粒体呼吸,并且有人认为这在生理上很重要,可增加氧气向组织中的渗透(通过减少血管附近细胞的氧气消耗)、激活AMP激酶以及调节脑血流量与氧气消耗之间的关系。然而,尚不清楚一氧化氮在生理上是否能积累到发生呼吸抑制的浓度。在大鼠小脑切片中,我们激活了一氧化氮合酶各同工型产生一氧化氮。只有病理性表达的诱导型一氧化氮合酶的激活才会对呼吸产生任何显著抑制。对氧气和一氧化氮浓度进行建模预测,在体内,生理状态下的一氧化氮水平过低,无法影响呼吸。即使在病理状态下,一氧化氮浓度可能也只会升至2.5纳摩尔,导致呼吸抑制1.5%。因此,在生理条件下,一氧化氮信号不会抑制呼吸,而是能很好地调节至鸟苷酸环化酶激活的动态范围。

相似文献

9
Nitric oxide and mitochondrial respiration.一氧化氮与线粒体呼吸
Biochim Biophys Acta. 1999 May 5;1411(2-3):351-69. doi: 10.1016/s0005-2728(99)00025-0.

引用本文的文献

2
Nitric Oxide Sensing by a Blue Fluorescent Protein.蓝色荧光蛋白对一氧化氮的传感
Antioxidants (Basel). 2022 Nov 11;11(11):2229. doi: 10.3390/antiox11112229.
3
Hyperoxia evokes pericyte-mediated capillary constriction.高氧可引起周细胞介导的毛细血管收缩。
J Cereb Blood Flow Metab. 2022 Nov;42(11):2032-2047. doi: 10.1177/0271678X221111598. Epub 2022 Jul 3.
5
Energy and Potassium Ion Homeostasis during Gamma Oscillations.γ振荡期间的能量与钾离子稳态
Front Mol Neurosci. 2016 Jun 16;9:47. doi: 10.3389/fnmol.2016.00047. eCollection 2016.
6
Non-signalling energy use in the developing rat brain.发育中大鼠大脑的无信号能量利用
J Cereb Blood Flow Metab. 2017 Mar;37(3):951-966. doi: 10.1177/0271678X16648710. Epub 2016 Jul 20.
9
Endothelial nitric oxide: protector of a healthy mind.内皮一氧化氮:健康心灵的守护者。
Eur Heart J. 2014 Apr;35(14):888-94. doi: 10.1093/eurheartj/eht544. Epub 2013 Dec 18.
10
Metabolic differentiation in the embryonic retina.胚胎视网膜中的代谢分化。
Nat Cell Biol. 2012 Aug;14(8):859-64. doi: 10.1038/ncb2531. Epub 2012 Jul 1.

本文引用的文献

8
Inactivation of nitric oxide by rat cerebellar slices.大鼠小脑切片对一氧化氮的灭活作用。
J Physiol. 2006 Dec 1;577(Pt 2):549-67. doi: 10.1113/jphysiol.2006.118380. Epub 2006 Sep 14.
9
Rapid nongenomic actions of thyroid hormone.甲状腺激素的快速非基因组作用。
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14104-9. doi: 10.1073/pnas.0601600103. Epub 2006 Sep 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验