Turnbough Charles L, Switzer Robert L
UAB Department of Microbiology, BBRB 409, 1530 3rd Ave. S., Birmingham, AL 35294-2170, USA.
Microbiol Mol Biol Rev. 2008 Jun;72(2):266-300, table of contents. doi: 10.1128/MMBR.00001-08.
DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
响应终产物而调控转录起始的DNA结合阻遏蛋白通常调节细菌的生物合成基因,但对于嘧啶生物合成(pyr)基因而言,情况并非如此。相反,细菌pyr基因的调控通常涉及仅依赖于操纵子前导区域中嵌入的调控序列的机制,这些机制会响应核苷酸信号导致转录提前终止或翻译抑制。对大肠杆菌和枯草芽孢杆菌pyr基因的研究揭示了多种调控机制。通过对UTP敏感的偶联转录和翻译进行的转录衰减调节肠道细菌中pyrBI和pyrE操纵子的表达,而核苷酸对PyrR蛋白与pyr mRNA衰减位点结合的影响则控制大多数革兰氏阳性细菌中pyr操纵子的表达。核苷酸敏感的重复转录是其他pyr基因调控的基础。对于大肠杆菌的pyrBI、carAB、codBA和upp-uraA操纵子,初始转录区域(ITR)内对UTP敏感的重复转录会导致无效的转录起始。革兰氏阳性细菌的pyrG ITR中对CTP敏感的重复转录涉及G残基的添加,导致抗终止子RNA发夹的形成并抑制转录衰减。一些机制涉及翻译调控而非转录调控。肠道细菌中pyrC和pyrD操纵子的表达由核苷酸敏感的转录起始切换控制,该切换产生具有不同翻译潜力的转录本。在耻垢分枝杆菌和其他细菌中,PyrR通过与其核糖体结合位点结合来调节pyr基因的翻译。本文介绍了支持这些结论的证据、对其他细菌的概括以及未来研究的前景。