Padilla-Parra Sergi, Audugé Nicolas, Coppey-Moisan Maïté, Tramier Marc
Institut Jacques Monod, UMR 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France.
Biophys J. 2008 Sep 15;95(6):2976-88. doi: 10.1529/biophysj.108.131276. Epub 2008 Jun 6.
Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (f(D)) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mf(D)), coming from the mathematical minimization of f(D). We find particular advantage in the use of mf(D) because it can be obtained without fitting procedures and it is derived directly from FLIM data. mf(D) constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mf(D) extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAF(II250) and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mf(D) by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times.
在活细胞中进行用于蛋白质相互作用研究的荧光共振能量转移(FRET)实验的定量分析仍然是一个具有挑战性的问题。在双组分系统(FRET和非FRET供体物种)中,荧光寿命成像显微镜(FLIM)数据的拟合给出了参与FRET的供体分子分数(f(D))和固有转移效率。但是,当使用快速FLIM采集以高空间和时间分辨率监测活细胞中蛋白质 - 蛋白质相互作用的动态变化时,光子统计和时间分辨率受到限制。在这种情况下,即使对于单寿命供体,拟合程序也不可靠。我们引入了参与FRET的供体分子最小分数(mf(D))的新概念,它来自f(D)的数学最小化。我们发现使用mf(D)具有特别的优势,因为它无需拟合程序即可获得,并且直接从FLIM数据得出。mf(D)构成了活细胞研究中一个有趣的定量参数,因为它与相互作用蛋白质的最小相对浓度有关。对于多寿命供体,拟合复杂荧光衰减以找到至少四个可靠寿命的过程几乎是不可能完成的任务。在这里,多寿命供体的mf(D)扩展是唯一的定量决定因素。我们应用这种方法在高分辨率下对活细胞中TAF(II250)的溴结构域与乙酰化组蛋白H4之间的相互作用进行成像。我们展示了离散的乙酰化染色质结构域的存在,其中与乙酰化H4相互作用的溴结构域的最小分数在0.26至0.36之间振荡,并且其大小小于一微米立方体的一半。我们证明,mf(D)本身就是研究活细胞中蛋白质相互作用的有用工具,特别是在使用快速FRET - FLIM采集时间时。