Suppr超能文献

在存在游离供体和受体的情况下对荧光共振能量转移(FRET)信号进行分析。

Analysis of FRET signals in the presence of free donors and acceptors.

作者信息

Wlodarczyk Jakub, Woehler Andrew, Kobe Fritz, Ponimaskin Evgeni, Zeug Andre, Neher Erwin

机构信息

Deutsche Forschungsgemeinschaft-Research Center for the Molecular Physiology of the Brain, Göttingen, Germany.

出版信息

Biophys J. 2008 Feb 1;94(3):986-1000. doi: 10.1529/biophysj.107.111773. Epub 2007 Oct 5.

Abstract

A method for spectral analysis of Förster resonance energy transfer (FRET) signals is presented, taking into consideration both the contributions of unpaired donor and acceptor fluorophores and the influence of incomplete labeling of the interacting partners. It is shown that spectral analysis of intermolecular FRET cannot yield accurate values of the Förster energy transfer efficiency E, unless one of the interactors is in large excess and perfectly labeled. Instead, analysis of donor quenching yields a product of the form Ef(d)p(a), where f(d) is the fraction of donor-type molecules participating in donor-acceptor complexes and p(a) is the labeling probability of the acceptor. Similarly, analysis of sensitized emission yields a product involving Ef(a). The analysis of intramolecular FRET (e.g., of tandem constructs) yields the product Ep(a). We use our method to determine these values for a tandem construct of cyan fluorescent protein and yellow fluorescent protein and compare them with those obtained by standard acceptor photobleaching and fluorescence lifetime measurements. We call the method lux-FRET, since it relies on linear unmixing of spectral components.

摘要

提出了一种用于Förster共振能量转移(FRET)信号光谱分析的方法,该方法同时考虑了未配对的供体和受体荧光团的贡献以及相互作用伙伴不完全标记的影响。结果表明,除非其中一个相互作用分子大量过量且标记完美,否则分子间FRET的光谱分析无法得出Förster能量转移效率E的准确值。相反,供体猝灭分析得出的产物形式为Ef(d)p(a),其中f(d)是参与供体-受体复合物的供体型分子的比例,p(a)是受体的标记概率。同样,敏化发射分析得出的产物涉及Ef(a)。分子内FRET(例如串联构建体的FRET)分析得出产物Ep(a)。我们使用我们的方法来确定青色荧光蛋白和黄色荧光蛋白串联构建体的这些值,并将它们与通过标准受体光漂白和荧光寿命测量获得的值进行比较。我们将该方法称为lux-FRET,因为它依赖于光谱成分的线性解混。

相似文献

1
Analysis of FRET signals in the presence of free donors and acceptors.
Biophys J. 2008 Feb 1;94(3):986-1000. doi: 10.1529/biophysj.107.111773. Epub 2007 Oct 5.
2
Fluorescence resonance energy transfer-based stoichiometry in living cells.
Biophys J. 2002 Dec;83(6):3652-64. doi: 10.1016/S0006-3495(02)75365-4.
4
Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells.
Micron. 2016 Sep;88:7-15. doi: 10.1016/j.micron.2016.04.005. Epub 2016 Apr 19.
5
satFRET: estimation of Förster resonance energy transfer by acceptor saturation.
Eur Biophys J. 2008 Nov;38(1):69-82. doi: 10.1007/s00249-008-0361-5. Epub 2008 Sep 4.
6
Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
J Microsc. 2018 Nov;272(2):145-150. doi: 10.1111/jmi.12755. Epub 2018 Sep 14.
7
Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES).
Biochim Biophys Acta Gen Subj. 2021 Feb;1865(2):129770. doi: 10.1016/j.bbagen.2020.129770. Epub 2020 Oct 22.
9
Anomalous surplus energy transfer observed with multiple FRET acceptors.
PLoS One. 2009 Nov 25;4(11):e8031. doi: 10.1371/journal.pone.0008031.

引用本文的文献

1
The cell adhesion molecule CD44 acts as a modulator of 5-HT7 receptor functions.
Cell Commun Signal. 2024 Nov 23;22(1):563. doi: 10.1186/s12964-024-01931-0.
2
Structural biases in disordered proteins are prevalent in the cell.
Nat Struct Mol Biol. 2024 Feb;31(2):283-292. doi: 10.1038/s41594-023-01148-8. Epub 2024 Jan 4.
3
Optimal inference of molecular interaction dynamics in FRET microscopy.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2211807120. doi: 10.1073/pnas.2211807120. Epub 2023 Apr 4.
4
Serotonin Receptor 5-HT Regulates TrkB Receptor Function in Heteroreceptor Complexes.
Cells. 2022 Aug 2;11(15):2384. doi: 10.3390/cells11152384.
5
Oligomerization and Spatial Distribution of Kvβ1.1 and Kvβ2.1 Regulatory Subunits.
Front Physiol. 2022 Jun 17;13:930769. doi: 10.3389/fphys.2022.930769. eCollection 2022.
7
Probing ion channel macromolecular interactions using fluorescence resonance energy transfer.
Methods Enzymol. 2021;653:319-347. doi: 10.1016/bs.mie.2021.01.047. Epub 2021 Mar 15.

本文引用的文献

2
Recent progress in developing FRET-based intracellular sensors for the detection of small molecule nutrients and ligands.
Trends Biotechnol. 2006 Dec;24(12):539-42. doi: 10.1016/j.tibtech.2006.10.008. Epub 2006 Oct 30.
3
Imaging molecular interactions in living cells by FRET microscopy.
Curr Opin Chem Biol. 2006 Oct;10(5):409-16. doi: 10.1016/j.cbpa.2006.08.021. Epub 2006 Sep 1.
4
Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells.
Biophys J. 2006 Sep 1;91(5):L39-41. doi: 10.1529/biophysj.106.088773. Epub 2006 Jun 30.
5
GFP-based FRET analysis in live cells.
Brain Res. 2006 May 26;1091(1):132-9. doi: 10.1016/j.brainres.2006.01.119. Epub 2006 Mar 10.
6
FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2138-43. doi: 10.1073/pnas.0507686103. Epub 2006 Feb 3.
7
Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging.
Nat Neurosci. 2006 Feb;9(2):283-91. doi: 10.1038/nn1635. Epub 2006 Jan 22.
8
A guide to choosing fluorescent proteins.
Nat Methods. 2005 Dec;2(12):905-9. doi: 10.1038/nmeth819.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验