Suppr超能文献

能量摄入与消耗对神经元可塑性的影响。

Impact of energy intake and expenditure on neuronal plasticity.

作者信息

Stranahan Alexis M, Mattson Mark P

机构信息

Cellular and Molecular Neuroscience Section, Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Balitmore, MD, USA.

出版信息

Neuromolecular Med. 2008;10(4):209-18. doi: 10.1007/s12017-008-8043-0. Epub 2008 Jun 10.

Abstract

The Roman poet Horace was among the first to recognize that when "clogged with yesterday's excess, the body drags the mind down with it." Although considerable attention has been paid in neuroscience to the enhancement of neuronal function by wheel running and caloric restriction, far less is known about the other side of this issue. What are the consequences of unhealthy habits to central nervous system function? Prolonged exposure to excessive caloric intake impairs neuronal function and also contributes to obesity and other risk factors for diabetes. Diabetes, a disease characterized by reduced sensitivity to glucose and insulin, is also associated with deficits in brain structure and function. In contrast, enhancement of somatic metabolism by wheel running or caloric restriction improves central neuroplasticity. Generalizing across studies reveals a relationship between global metabolic efficiency and neuroplasticity in the hippocampus, a brain region that is essential for learning and memory. The specific principles upheld by these findings are suggestive of a continuum, with global metabolic alterations fluctuating in concert with neuroplasticity in the hippocampus.

摘要

罗马诗人贺拉斯是最早认识到“身体因昨日的过度而堵塞,会将心灵也一同拖垮”的人之一。尽管神经科学领域对通过跑步和热量限制来增强神经元功能给予了相当多的关注,但对于这个问题的另一面却知之甚少。不健康的习惯对中枢神经系统功能有哪些影响?长期暴露于高热量摄入会损害神经元功能,还会导致肥胖以及糖尿病的其他风险因素。糖尿病是一种以对葡萄糖和胰岛素敏感性降低为特征的疾病,也与脑结构和功能缺陷有关。相比之下,通过跑步或热量限制来增强身体代谢可改善中枢神经可塑性。综合各项研究发现,整体代谢效率与海马体(对学习和记忆至关重要的脑区)的神经可塑性之间存在关联。这些发现所秉持的具体原则表明存在一种连续性,即整体代谢变化与海马体的神经可塑性同步波动。

相似文献

1
Impact of energy intake and expenditure on neuronal plasticity.
Neuromolecular Med. 2008;10(4):209-18. doi: 10.1007/s12017-008-8043-0. Epub 2008 Jun 10.
2
Bidirectional metabolic regulation of neurocognitive function.
Neurobiol Learn Mem. 2011 Nov;96(4):507-16. doi: 10.1016/j.nlm.2011.01.004. Epub 2011 Jan 12.
5
Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity.
Neuroscience. 2006;139(4):1221-34. doi: 10.1016/j.neuroscience.2006.01.062. Epub 2006 Mar 31.
6
The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective.
Behav Brain Res. 2008 Sep 1;192(1):42-60. doi: 10.1016/j.bbr.2008.03.014. Epub 2008 Mar 21.
7
Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition.
Eur J Neurosci. 2008 Dec;28(11):2278-87. doi: 10.1111/j.1460-9568.2008.06524.x.
8
Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice.
Neurobiol Aging. 2010 Nov;31(11):1937-49. doi: 10.1016/j.neurobiolaging.2008.10.016. Epub 2008 Dec 12.
9
Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health.
Ann N Y Acad Sci. 2012 Aug;1264(1):49-63. doi: 10.1111/j.1749-6632.2012.06525.x. Epub 2012 Apr 30.

引用本文的文献

1
Programming the Brain: How Maternal Overnutrition Shapes Cognitive Aging in Offspring.
Nutrients. 2025 Mar 12;17(6):988. doi: 10.3390/nu17060988.
2
D-ꞵ-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance.
PNAS Nexus. 2024 May 16;3(5):pgae196. doi: 10.1093/pnasnexus/pgae196. eCollection 2024 May.
3
-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance.
bioRxiv. 2024 May 12:2023.08.23.554428. doi: 10.1101/2023.08.23.554428.
5
Understanding the Link Between Maternal Overnutrition, Cardio-Metabolic Dysfunction and Cognitive Aging.
Front Neurosci. 2021 Feb 26;15:645569. doi: 10.3389/fnins.2021.645569. eCollection 2021.
6
Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI.
Exp Neurol. 2019 Aug;318:78-91. doi: 10.1016/j.expneurol.2019.04.016. Epub 2019 May 2.
7
Tauopathy and neurodegeneration: A role for stress.
Neurobiol Stress. 2018 Sep 1;9:105-112. doi: 10.1016/j.ynstr.2018.08.009. eCollection 2018 Nov.
9
Early life exposure to obesogenic diets and learning and memory dysfunction.
Curr Opin Behav Sci. 2016 Jun;9:7-14. doi: 10.1016/j.cobeha.2015.11.014.
10
Neurohormetic phytochemicals: An evolutionary-bioenergetic perspective.
Neurochem Int. 2015 Oct;89:271-80. doi: 10.1016/j.neuint.2015.03.009. Epub 2015 Apr 7.

本文引用的文献

1
Spine-type-specific recruitment of newly synthesized AMPA receptors with learning.
Science. 2008 Feb 22;319(5866):1104-7. doi: 10.1126/science.1149967.
2
Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons.
Nat Neurosci. 2008 Mar;11(3):309-17. doi: 10.1038/nn2055. Epub 2008 Feb 17.
3
Be smart, exercise your heart: exercise effects on brain and cognition.
Nat Rev Neurosci. 2008 Jan;9(1):58-65. doi: 10.1038/nrn2298.
4
Recognition memory: opposite effects of hippocampal damage on recollection and familiarity.
Nat Neurosci. 2008 Jan;11(1):16-8. doi: 10.1038/nn2016. Epub 2007 Nov 25.
5
Recognition memory and the medial temporal lobe: a new perspective.
Nat Rev Neurosci. 2007 Nov;8(11):872-83. doi: 10.1038/nrn2154.
7
Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats.
Acta Neurol Scand. 2008 Mar;117(3):205-10. doi: 10.1111/j.1600-0404.2007.00928.x. Epub 2007 Sep 14.
9
Peripheral insulin and brain structure in early Alzheimer disease.
Neurology. 2007 Sep 11;69(11):1094-104. doi: 10.1212/01.wnl.0000276952.91704.af.
10
Exercise builds brain health: key roles of growth factor cascades and inflammation.
Trends Neurosci. 2007 Sep;30(9):464-72. doi: 10.1016/j.tins.2007.06.011. Epub 2007 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验