Suppr超能文献

Onto-CC:一个用于识别基因本体概念簇的网络服务器。

Onto-CC: a web server for identifying Gene Ontology conceptual clusters.

作者信息

Romero-Zaliz R, Del Val C, Cobb J P, Zwir I

机构信息

Departamento de Ciencias de la Computación e Inteligencia Artificial, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación, c/. Daniel Saucedo Aranda, s/n 18071 Granada, Spain.

出版信息

Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W352-7. doi: 10.1093/nar/gkn323. Epub 2008 Jun 10.

Abstract

The Gene Ontology (GO) vocabulary has been extensively explored to analyze the functions of coexpressed genes. However, despite its extended use in Biology and Medical Sciences, there are still high levels of uncertainty about which ontology (i.e. Molecular Process, Cellular Component or Molecular Function) should be used, and at which level of specificity. Moreover, the GO database can contain incomplete information resulting from human annotations, or highly influenced by the available knowledge about a specific branch in an ontology. In spite of these drawbacks, there is a trend to ignore these problems and even use GO terms to conduct searches of gene expression profiles (i.e. expression + GO) instead of more cautious approaches that just consider them as an independent source of validation (i.e. expression versus GO). Consequently, propagating the uncertainty and producing biased analysis of the required gene grouping hypotheses. We proposed a web tool, Onto-CC, as an automatic method specially suited for independent explanation/validation of gene grouping hypotheses (e.g. coexpressed genes) based on GO clusters (i.e. expression versus GO). Onto-CC approach reduces the uncertainty of the queries by identifying optimal conceptual clusters that combine terms from different ontologies simultaneously, as well as terms defined at different levels of specificity in the GO hierarchy. To do so, we implemented the EMO-CC methodology to find clusters in structural databases [GO Directed acyclic Graph (DAG) tree], inspired on Conceptual Clustering algorithms. This approach allows the management of optimal cluster sets as potential parallel hypotheses, guided by multiobjective/multimodal optimization techniques. Therefore, we can generate alternative and, still, optimal explanations of queries that can provide new insights for a given problem. Onto-CC has been successfully used to test different medical and biological hypotheses including the explanation and prediction of gene expression profiles resulting from the host response to injuries in the inflammatory problem. Onto-CC provides two versions: Ready2GO, a precalculated EMO-CC for several genomes and an Advanced Onto-CC for custom annotation files (http://gps-tools2.wustl.edu/onto-cc/index.html).

摘要

基因本体论(GO)词汇已被广泛用于分析共表达基因的功能。然而,尽管它在生物学和医学科学中得到了广泛应用,但对于应该使用哪种本体(即分子过程、细胞成分或分子功能)以及在何种特异性水平上使用,仍然存在高度的不确定性。此外,GO数据库可能包含人类注释导致的不完整信息,或者受到本体中特定分支的现有知识的高度影响。尽管存在这些缺点,但有一种趋势是忽略这些问题,甚至使用GO术语来搜索基因表达谱(即表达+GO),而不是采用更谨慎的方法,即仅将它们视为独立的验证来源(即表达与GO)。因此,传播了不确定性并对所需的基因分组假设产生了有偏差的分析。我们提出了一个网络工具Onto-CC,作为一种自动方法,特别适合基于GO簇(即表达与GO)对基因分组假设(例如共表达基因)进行独立解释/验证。Onto-CC方法通过识别同时组合来自不同本体的术语以及在GO层次结构中不同特异性水平定义的术语的最佳概念簇,降低了查询的不确定性。为此,我们实施了EMO-CC方法,以在结构数据库[GO有向无环图(DAG)树]中查找簇,这是受概念聚类算法启发而来的。这种方法允许将最佳簇集作为潜在的并行假设进行管理,由多目标/多模态优化技术指导。因此,我们可以生成对查询的替代且仍然最优的解释,这些解释可以为给定问题提供新的见解。Onto-CC已成功用于测试不同的医学和生物学假设,包括对炎症问题中宿主对损伤的反应所产生的基因表达谱的解释和预测。Onto-CC提供两个版本:Ready2GO,针对多个基因组预先计算的EMO-CC,以及针对自定义注释文件的高级Onto-CC(http://gps-tools2.wustl.edu/onto-cc/index.html)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e3f/2447763/fe12a03c8920/gkn323f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验