Aristilde Ludmilla, Sposito Garrison
Molecular Toxicology, University of California at Berkeley, Berkeley, California 94720-3114, USA.
Environ Toxicol Chem. 2008 Nov;27(11):2304-10. doi: 10.1897/08-059.1.
An understanding of the factors controlling the chemodynamics of fluoroquinolone antibiotics in different environmental matrices is a necessary prerequisite to the assessment of their potential impact on nontarget organisms in soils and receiving waters. Of particular interest are the complexes formed between fluoroquinolones and metal cations, which are believed to be important in the mechanism of sequestration of the antibiotic by minerals and natural organic matter. The structures of these complexes have not been fully resolved by conventional spectroscopy; therefore, molecular simulations may provide useful complementary insights. We present results from apparently the first molecular dynamics simulations of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), in aqueous complexes with five metal cations typically found in soils and surface waters: Ca2+, Mg2+, Fe2+, Na+, and K+. The interatomic potential functions employed in the simulations were validated by comparison with available structural data for solid-phase Cipro-hexahydrate and for the metal cations in aqueous solution. Although no comprehensive structural data on the aqueous complexes appear to be available, properties of the metal complexes predicted by our simulations agree with available data for solid-phase metal-Cipro complexes. Our results indicate that the ionic potential of the metal cation controls the stability of the complex formed and that the hydration number of the metal cation in aqueous solution determines its coordination number with O atoms in the metal-Cipro complex. In respect to environmental chemodynamics, our results imply that Cipro will form two configurations of bidendate chelates with metal centers on exposed surfaces of mineral oxides, water-bridged surface complexes with exchangeable cations in clay mineral interlayers, and cation-bridged complexes with functional groups in natural organic matter.
了解控制氟喹诺酮类抗生素在不同环境基质中的化学动力学的因素,是评估其对土壤和受纳水体中非靶标生物潜在影响的必要前提。特别令人感兴趣的是氟喹诺酮类与金属阳离子形成的络合物,据信这些络合物在抗生素被矿物质和天然有机物螯合的机制中很重要。这些络合物的结构尚未通过传统光谱法完全解析;因此,分子模拟可能会提供有用的补充见解。我们展示了显然是首次对一种广泛使用的氟喹诺酮类抗生素环丙沙星(西普乐)与土壤和地表水中常见的五种金属阳离子(Ca2+、Mg2+、Fe2+、Na+和K+)形成的水性络合物进行分子动力学模拟的结果。通过与固相环丙沙星六水合物以及水溶液中金属阳离子的现有结构数据进行比较,验证了模拟中使用的原子间势函数。尽管似乎没有关于水性络合物的全面结构数据,但我们模拟预测的金属络合物性质与固相金属 - 环丙沙星络合物的现有数据一致。我们的结果表明,金属阳离子的离子势控制着形成的络合物的稳定性,并且水溶液中金属阳离子的水合数决定了其在金属 - 环丙沙星络合物中与O原子的配位数。就环境化学动力学而言,我们的结果意味着环丙沙星将与矿物氧化物暴露表面上的金属中心形成两种双齿螯合物构型、与粘土矿物层间可交换阳离子形成水桥表面络合物以及与天然有机物中的官能团形成阳离子桥络合物。