Suppr超能文献

临床试验荟萃分析中缺失结局数据的插补方法。

Imputation methods for missing outcome data in meta-analysis of clinical trials.

作者信息

Higgins Julian P T, White Ian R, Wood Angela M

机构信息

MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge, UK.

出版信息

Clin Trials. 2008;5(3):225-39. doi: 10.1177/1740774508091600.

Abstract

BACKGROUND

Missing outcome data from randomized trials lead to greater uncertainty and possible bias in estimating the effect of an experimental treatment. An intention-to-treat analysis should take account of all randomized participants even if they have missing observations.

PURPOSE

To review and develop imputation methods for missing outcome data in meta-analysis of clinical trials with binary outcomes.

METHODS

We review some common strategies, such as simple imputation of positive or negative outcomes, and develop a general approach involving ;informative missingness odds ratios' (IMORs). We describe several choices for weighting studies in the meta-analysis, and illustrate methods using a meta-analysis of trials of haloperidol for schizophrenia.

RESULTS

IMORs describe the relationship between the unknown risk among missing participants and the known risk among observed participants. They are allowed to differ between treatment groups and across trials. Application of IMORs and other methods to the haloperidol trials reveals the overall conclusion to be robust to different assumptions about the missing data.

LIMITATIONS

The methods are based on summary data from each trial (number of observed positive outcomes, number of observed negative outcomes and number of missing outcomes) for each intervention group. This limits the options for analysis, and greater flexibility would be available with individual participant data.

CONCLUSIONS

We propose that available reasons for missingness be used to determine appropriate IMORs. We also recommend a strategy for undertaking sensitivity analyses, in which the IMORs are varied over plausible ranges.

摘要

背景

随机试验中缺失的结果数据会导致在估计实验性治疗效果时产生更大的不确定性和可能的偏差。意向性分析应考虑所有随机分组的参与者,即使他们有缺失的观察数据。

目的

回顾并开发用于二元结局临床试验荟萃分析中缺失结果数据的插补方法。

方法

我们回顾了一些常见策略,如对阳性或阴性结果进行简单插补,并开发了一种涉及“信息性缺失比值比”(IMORs)的通用方法。我们描述了荟萃分析中加权研究的几种选择,并通过对氟哌啶醇治疗精神分裂症试验的荟萃分析来说明方法。

结果

IMORs描述了缺失参与者中未知风险与观察到的参与者中已知风险之间的关系。它们在不同治疗组和不同试验之间可以有所不同。将IMORs和其他方法应用于氟哌啶醇试验表明,总体结论对于关于缺失数据的不同假设具有稳健性。

局限性

这些方法基于每个干预组每次试验的汇总数据(观察到的阳性结果数、观察到的阴性结果数和缺失结果数)。这限制了分析选项,而使用个体参与者数据会有更大的灵活性。

结论

我们建议利用缺失的可用原因来确定合适的IMORs。我们还推荐了一种进行敏感性分析的策略,即让IMORs在合理范围内变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ef/2602608/30e2c5366222/ctj091600f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验