Sasková Klára Grantz, Kozísek Milan, Lepsík Martin, Brynda Jirí, Rezácová Pavlína, Václavíková Jana, Kagan Ron M, Machala Ladislav, Konvalinka Jan
Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic.
Protein Sci. 2008 Sep;17(9):1555-64. doi: 10.1110/ps.036079.108. Epub 2008 Jun 17.
Lopinavir (LPV) is a second-generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long-term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a single I47A substitution has the inhibition constant (K(i) ) value for lopinavir by two orders of magnitude higher than for the wild-type PR. The addition of the I47A substitution to the background of a multiply mutated PR species from an AIDS patient showed a three-order-of-magnitude increase in K(i) in vitro relative to the patient PR without the I47A mutation. The crystal structure of I47A PR in complex with LPV showed the loss of van der Waals interactions in the S2/S2' subsites. This is caused by the loss of three side-chain methyl groups due to the I47A substitution and by structural changes in the A47 main chain that lead to structural changes in the flap antiparallel beta-strand. Furthermore, we analyzed possible interaction of the I47A mutation with secondary mutations V32I and I54V. We show that both mutations in combination with I47A synergistically increase the relative resistance to LPV in vitro. The crystal structure of the I47A/I54V PR double mutant in complex with LPV shows that the I54V mutation leads to a compaction of the flap, and molecular modeling suggests that the introduction of the I54V mutation indirectly affects the strain of the bound inhibitor in the PR binding cleft.
洛匹那韦(LPV)是一种第二代HIV蛋白酶抑制剂(PI),旨在克服长期接受抗病毒治疗患者中出现的耐药性。HIV蛋白酶(PR)第47位异亮氨酸突变为丙氨酸与对LPV的高水平耐药性相关。在本研究中,我们表明含有单个I47A替代的重组PR对洛匹那韦的抑制常数(K(i))值比野生型PR高两个数量级。在一名艾滋病患者的多重突变PR物种背景中添加I47A替代,相对于没有I47A突变的患者PR,体外K(i)增加了三个数量级。I47A PR与LPV复合物的晶体结构显示S2/S2'亚位点中范德华相互作用的丧失。这是由于I47A替代导致三个侧链甲基的丧失以及A47主链的结构变化,进而导致瓣反平行β链的结构变化。此外,我们分析了I47A突变与二级突变V32I和I54V的可能相互作用。我们表明,这两个突变与I47A结合在体外协同增加对LPV的相对耐药性。I47A/I54V PR双突变体与LPV复合物的晶体结构表明,I54V突变导致瓣的压缩,分子建模表明I54V突变的引入间接影响PR结合裂隙中结合抑制剂的张力。