Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa.
Biomolecules. 2021 Mar 24;11(4):489. doi: 10.3390/biom11040489.
Understanding the underlying molecular interaction during a therapy switch from lopinavir (LPV) to darunavir (DRV) is essential to achieve long-term virological suppression. We investigated the kinetic and structural characteristics of multidrug-resistant South African HIV-1 subtype C protease (HIV-1 PR) during therapy switch from LPV to DRV using enzyme activity and inhibition assay, fluorescence spectroscopy, and molecular dynamic simulation. The HIV-1 protease variants were from clinical isolates with a combination of drug resistance mutations; MUT-1 (M46I, I54V, V82A, and L10F), MUT-2 (M46I, I54V, L76V, V82A, L10F, and L33F), and MUT-3 (M46I, I54V, L76V, V82A, L90M, and F53L). Enzyme kinetics analysis shows an association between increased relative resistance to LPV and DRV with the progressive decrease in the mutant HIV-1 PR variants' catalytic efficiency. A direct relationship between high-level resistance to LPV and intermediate resistance to DRV with intrinsic changes in the three-dimensional structure of the mutant HIV-1 PR as a function of the multidrug-resistance mutation was observed. In silico analysis attributed these structural adjustments to the multidrug-resistance mutations affecting the LPV and DRV binding landscape. Though DRV showed superiority to LPV, as a lower concentration was needed to inhibit the HIV-1 PR variants, the inherent structural changes resulting from mutations selected during LPV therapy may dynamically shape the DRV treatment outcome after the therapy switch.
了解从洛匹那韦(LPV)转换为达芦那韦(DRV)治疗时的潜在分子相互作用对于实现长期病毒学抑制至关重要。我们使用酶活性和抑制测定法、荧光光谱法和分子动力学模拟,研究了多药耐药性南非 HIV-1 亚型 C 蛋白酶(HIV-1 PR)在从 LPV 转换为 DRV 治疗过程中的动力学和结构特征。HIV-1 蛋白酶变体来自具有耐药突变组合的临床分离株;MUT-1(M46I、I54V、V82A 和 L10F)、MUT-2(M46I、I54V、L76V、V82A、L10F 和 L33F)和 MUT-3(M46I、I54V、L76V、V82A、L90M 和 F53L)。酶动力学分析表明,随着突变 HIV-1 PR 变体的催化效率逐渐降低,对 LPV 和 DRV 的相对耐药性增加之间存在关联。观察到对 LPV 的高度耐药性和对 DRV 的中度耐药性之间存在直接关系,这与突变 HIV-1 PR 的三维结构的固有变化有关,而这种变化是作为多药耐药突变的函数。计算机分析将这些结构调整归因于耐药突变,这些突变影响 LPV 和 DRV 的结合景观。尽管 DRV 显示出优于 LPV 的优势,因为需要较低的浓度来抑制 HIV-1 PR 变体,但由于 LPV 治疗期间选择的突变而导致的固有结构变化可能会在治疗转换后动态塑造 DRV 治疗结果。