Suppr超能文献

考虑假阳性减少和乳腺密度信息的肿块自检测

Eigendetection of masses considering false positive reduction and breast density information.

作者信息

Freixenet Jordi, Oliver Arnau, Martí Robert, Lladó Xavier, Pont Josep, Pérez Elsa, Denton Erika R E, Zwiggelaar Reyer

机构信息

Institute of Informatics and Applications - IdiBGi, University of Girona, Campus Montilivi, Ed. P-IV 17071, Girona, Spain.

出版信息

Med Phys. 2008 May;35(5):1840-53. doi: 10.1118/1.2897950.

Abstract

The purpose of this article is to present a novel algorithm for the detection of masses in mammographic computer-aided diagnosis systems. Four key points provide the novelty of our approach: (1) the use of eigenanalysis for describing variation in mass shape and size; (2) a Bayesian detection methodology providing a mathematical sound framework, flexible enough to include additional information; (3) the use of a two-dimensional principal components analysis approach to facilitate false positive reduction; and (4) the incorporation of breast density information, a parameter correlated with the performance of most mass detection algorithms and which is not considered in existing approaches. To study the performance of the system two experiments were carried out. The first is related to the ability of the system to detect masses, and thus, free-response receiver operating characteristic analysis was used, showing that the method is able to give high accuracy at a high specificity (80% detection at 1.40 false positives per image). Second, the ability of the system to highlight the pixels belonging to a mass is studied using receiver operating characteristic analysis, resulting in A(z) = 0.89 +/- 0.04. In addition, the robustness of the approach is demonstrated in an experiment where we used the Digital Database for Screening Mammography database for training and the Mammographic Image Analysis Society database for testing the algorithm.

摘要

本文的目的是提出一种用于乳腺X线计算机辅助诊断系统中肿块检测的新算法。我们的方法有四个新颖之处:(1)使用特征分析来描述肿块形状和大小的变化;(2)一种贝叶斯检测方法,提供了一个数学上合理的框架,足够灵活以纳入额外信息;(3)使用二维主成分分析方法来促进假阳性的减少;(4)纳入乳腺密度信息,这是一个与大多数肿块检测算法的性能相关且现有方法未考虑的参数。为了研究该系统的性能,进行了两个实验。第一个实验与系统检测肿块的能力有关,因此,使用了自由响应接收器操作特性分析,结果表明该方法能够在高特异性(每幅图像1.40个假阳性时80%的检测率)下给出高精度。其次,使用接收器操作特性分析研究系统突出属于肿块的像素的能力,得到A(z)=0.89±0.04。此外,在一个实验中证明了该方法的鲁棒性,在该实验中我们使用数字乳腺筛查数据库进行训练,并使用乳腺影像分析学会数据库来测试该算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验