Suppr超能文献

用于术中锥形束CT的移动C形臂的几何校准

Geometric calibration of a mobile C-arm for intraoperative cone-beam CT.

作者信息

Daly M J, Siewerdsen J H, Cho Y B, Jaffray D A, Irish J C

机构信息

Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada.

出版信息

Med Phys. 2008 May;35(5):2124-36. doi: 10.1118/1.2907563.

Abstract

A geometric calibration method that determines a complete description of source-detector geometry was adapted to a mobile C-arm for cone-beam computed tomography (CBCT). The non-iterative calibration algorithm calculates a unique solution for the positions of the source (X(s), Y(s), Z(s)), detector (X(d), Y(d), Z(d)), piercing point (U(o), V(o)), and detector rotation angles (phi, theta, eta) based on projections of a phantom consisting of two plane-parallel circles of ball bearings encased in a cylindrical acrylic tube. The prototype C-arm system was based on a Siemens PowerMobil modified to provide flat-panel CBCT for image-guided interventions. The magnitude of geometric nonidealities in the source-detector orbit was measured, and the short-term (approximately 4 h) and long-term (approximately 6 months) reproducibility of the calibration was evaluated. The C-arm exhibits large geometric nonidealities due to mechanical flex, with maximum departures from the average semicircular orbit of deltaU(o) = 15.8 mm and deltaV(o) = 9.8 mm (for the piercing point), deltaX and deltaY = 6-8 mm and deltaZ = 1 mm (for the source and detector), and deltaphi approximately 2.9 degrees, deltatheta approximately 1.9 degrees, and delta eta approximately 0.8 degrees (for the detector tilt/rotation). Despite such significant departures from a semicircular orbit, these system parameters were found to be reproducible, and therefore correctable by geometric calibration. Short-term reproducibility was < 0.16 mm (subpixel) for the piercing point coordinates, < 0.25 mm for the source-detector X and Y, < 0.035 mm for the source-detector Z, and < 0.02 degrees for the detector angles. Long-term reproducibility was similarly high, demonstrated by image quality and spatial resolution measurements over a period of 6 months. For example, the full-width at half-maximum (FWHM) in axial images of a thin steel wire increased slightly as a function of the time (delta) between calibration and image acquisition: FWHM=0.62, 0.63, 0.66, 0.71, and 0.72 mm at delta = 0 s, 1 h, 1 day, 1 month, and 6 months, respectively. For ongoing clinical trials in CBCT-guided surgery at our institution, geometric calibration is conducted monthly to provide sufficient three-dimensional (3D) image quality while managing time and workflow considerations of the calibration and quality assurance process. The sensitivity of 3D image quality to each of the system parameters was investigated, as was the tolerance to systematic and random errors in the geometric parameters, showing the most sensitive parameters to be the piercing point coordinates (U(o), V(o)) and in-plane positions of the source (X(s), Y(s)) and detector (X(d), Y(d)). Errors in the out-of-plane position of the source (Z(s)) and detector (Z(d)) and the detector angles (phi, theta, eta) were shown to have subtler effects on 3D image quality.

摘要

一种用于确定源 - 探测器几何结构完整描述的几何校准方法被应用于用于锥束计算机断层扫描(CBCT)的移动C形臂。这种非迭代校准算法基于一个由封装在圆柱形丙烯酸管中的两个平面平行滚珠轴承圆组成的体模投影,计算源(X(s),Y(s),Z(s))、探测器(X(d),Y(d),Z(d))、穿刺点(U(o),V(o))以及探测器旋转角度(phi,theta,eta)位置的唯一解。该原型C形臂系统基于西门子PowerMobil进行改造,以提供用于图像引导介入的平板CBCT。测量了源 - 探测器轨道中几何非理想性的大小,并评估了校准的短期(约4小时)和长期(约6个月)可重复性。由于机械弯曲,C形臂表现出较大的几何非理想性,穿刺点偏离平均半圆轨道的最大偏差为deltaU(o) = 15.8毫米和deltaV(o) = 9.8毫米,源和探测器的deltaX和deltaY = 6 - 8毫米以及deltaZ = 1毫米,探测器倾斜/旋转的deltaphi约为2.9度,deltatheta约为1.9度,delta eta约为0.8度。尽管与半圆轨道有如此显著的偏差,但发现这些系统参数是可重复的,因此可通过几何校准进行校正。穿刺点坐标的短期可重复性小于0.16毫米(亚像素),源 - 探测器X和Y小于0.25毫米,源 - 探测器Z小于0.035毫米,探测器角度小于0.02度。长期可重复性同样很高,通过6个月期间的图像质量和空间分辨率测量得以证明。例如,细钢丝轴向图像中的半高宽(FWHM)随校准和图像采集之间的时间(delta)略有增加:在校准和图像采集时间间隔delta = 0秒、1小时、1天、1个月和6个月时,FWHM分别为0.62、0.63、0.66、0.71和0.72毫米。对于我们机构正在进行的CBCT引导手术临床试验,每月进行几何校准,以在管理校准和质量保证过程的时间和工作流程考虑因素的同时,提供足够的三维(3D)图像质量。研究了3D图像质量对每个系统参数的敏感性,以及对几何参数中的系统误差和随机误差的耐受性,结果表明最敏感的参数是穿刺点坐标(U(o),V(o))以及源(X(s),Y(s))和探测器(X(d),Y(d))的平面内位置。源(Z(s))和探测器(Z(d))的平面外位置以及探测器角度(phi,theta,eta)的误差对3D图像质量的影响较细微。

相似文献

1
Geometric calibration of a mobile C-arm for intraoperative cone-beam CT.
Med Phys. 2008 May;35(5):2124-36. doi: 10.1118/1.2907563.
3
Auto calibration of a cone-beam-CT.
Med Phys. 2012 Oct;39(10):5959-70. doi: 10.1118/1.4739247.
7
Self-calibration of cone-beam CT geometry using 3D-2D image registration.
Phys Med Biol. 2016 Apr 7;61(7):2613-32. doi: 10.1088/0031-9155/61/7/2613. Epub 2016 Mar 10.

引用本文的文献

2
AAPM Task Group Report 238: 3D C-arms with volumetric imaging capability.
Med Phys. 2023 Aug;50(8):e904-e945. doi: 10.1002/mp.16245. Epub 2023 Feb 20.
3
The current status and future prospects for molecular imaging-guided precision surgery.
Cancer Imaging. 2022 Sep 6;22(1):48. doi: 10.1186/s40644-022-00482-2.
6
Online mobile C-arm calibration using inertial sensors: a preliminary study in order to achieve CBCT.
Int J Comput Assist Radiol Surg. 2020 Feb;15(2):213-224. doi: 10.1007/s11548-019-02061-6. Epub 2019 Sep 10.
8
Deformable 3D-2D Registration for Guiding K-Wire Placement in Pelvic Trauma Surgery.
Proc SPIE Int Soc Opt Eng. 2017 Mar;10135. doi: 10.1117/12.2255952.
10
Integration of free-hand 3D ultrasound and mobile C-arm cone-beam CT: Feasibility and characterization for real-time guidance of needle insertion.
Comput Med Imaging Graph. 2017 Jun;58:13-22. doi: 10.1016/j.compmedimag.2017.03.003. Epub 2017 Apr 3.

本文引用的文献

2
Intraoperative cone-beam CT for image-guided tibial plateau fracture reduction.
Comput Aided Surg. 2007 Jul;12(4):195-207. doi: 10.3109/10929080701526872.
4
3D soft tissue imaging with a mobile C-arm.
Comput Med Imaging Graph. 2007 Mar;31(2):91-102. doi: 10.1016/j.compmedimag.2006.11.003. Epub 2006 Dec 26.
5
A quality assurance program for the on-board imagers.
Med Phys. 2006 Nov;33(11):4431-47. doi: 10.1118/1.2362872.
8
A geometric calibration method for cone beam CT systems.
Med Phys. 2006 Jun;33(6):1695-706. doi: 10.1118/1.2198187.
9
Intraoperative cone-beam CT for guidance of temporal bone surgery.
Otolaryngol Head Neck Surg. 2006 May;134(5):801-8. doi: 10.1016/j.otohns.2005.12.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验