Suppr超能文献

使用贝叶斯等渗变换在I/II期临床试验中进行剂量-给药方案探索

Dose--schedule finding in phase I/II clinical trials using a Bayesian isotonic transformation.

作者信息

Li Yisheng, Bekele B Nebiyou, Ji Yuan, Cook John D

机构信息

Department of Biostatistics, Division of Quantitative Sciences, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 447, Houston, TX 77030, USA.

出版信息

Stat Med. 2008 Oct 30;27(24):4895-913. doi: 10.1002/sim.3329.

Abstract

A dose-schedule-finding trial is a new type of oncology trial in which investigators aim to find a combination of dose and treatment schedule that has a large probability of efficacy yet a relatively small probability of toxicity. We demonstrate that a major difference between traditional dose-finding and dose-schedule-finding trials is that while the toxicity probabilities follow a simple nondecreasing order in dose-finding trials, those of dose-schedule-finding trials may adhere to a matrix order. We show that the success of a dose-schedule-finding method requires careful statistical modeling and a sensible dose-schedule allocation scheme. We propose a Bayesian hierarchical model that jointly models the unordered probabilities of toxicity and efficacy and apply a Bayesian isotonic transformation to the posterior samples of the toxicity probabilities, so that the transformed posterior samples adhere to the matrix-order constraints. On the basis of the joint posterior distribution of the order-constrained toxicity probabilities and the unordered efficacy probabilities, we develop a dose-schedule-finding algorithm that sequentially allocates patients to the best dose-schedule combination under certain criteria. We illustrate our methodology through its application to a clinical trial in leukemia and compare it with two alternative approaches.

摘要

剂量-给药方案探索试验是一种新型的肿瘤学试验,在该试验中,研究人员旨在找到一种剂量与治疗方案的组合,使其具有高疗效概率和相对低毒性概率。我们证明,传统的剂量探索试验与剂量-给药方案探索试验之间的一个主要区别在于,在剂量探索试验中,毒性概率遵循简单的非递减顺序,而在剂量-给药方案探索试验中,毒性概率可能遵循矩阵顺序。我们表明,剂量-给药方案探索方法的成功需要仔细的统计建模和合理的剂量-给药方案分配方案。我们提出了一种贝叶斯分层模型,该模型对毒性和疗效的无序概率进行联合建模,并对毒性概率的后验样本应用贝叶斯保序变换,以使变换后的后验样本遵循矩阵顺序约束。基于顺序约束的毒性概率和无序疗效概率的联合后验分布,我们开发了一种剂量-给药方案探索算法,该算法根据特定标准将患者依次分配到最佳剂量-给药方案组合中。我们通过将其应用于白血病临床试验来说明我们的方法,并将其与两种替代方法进行比较。

相似文献

2
Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
Stat Med. 2015 Feb 28;34(5):859-75. doi: 10.1002/sim.6376. Epub 2014 Nov 21.
3
STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials.
Stat Med. 2017 Nov 20;36(26):4106-4120. doi: 10.1002/sim.7428. Epub 2017 Aug 7.
4
A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial.
Biometrics. 2005 Jun;61(2):343-54. doi: 10.1111/j.1541-0420.2005.00314.x.
5
A Bayesian dose-finding design for phase I/II clinical trials with nonignorable dropouts.
Stat Med. 2015 May 10;34(10):1721-32. doi: 10.1002/sim.6443. Epub 2015 Jan 28.
6
Using joint utilities of the times to response and toxicity to adaptively optimize schedule-dose regimes.
Biometrics. 2013 Sep;69(3):673-82. doi: 10.1111/biom.12065. Epub 2013 Aug 19.
7
Application of Bayesian hierarchical models for phase I/II clinical trials in oncology.
Pharm Stat. 2017 Mar;16(2):114-121. doi: 10.1002/pst.1793. Epub 2016 Nov 28.
8
Bayesian dose-finding in phase I/II clinical trials using toxicity and efficacy odds ratios.
Biometrics. 2006 Sep;62(3):777-84. doi: 10.1111/j.1541-0420.2006.00534.x.
9
A Bayesian adaptive phase I-II trial design for optimizing the schedule of therapeutic cancer vaccines.
Stat Med. 2017 Jan 15;36(1):43-53. doi: 10.1002/sim.7087. Epub 2016 Aug 21.
10
A Bayesian adaptive Phase I-II clinical trial for evaluating efficacy and toxicity with delayed outcomes.
Clin Trials. 2014 Feb;11(1):38-48. doi: 10.1177/1740774513500589. Epub 2013 Sep 30.

引用本文的文献

1
A Bayesian pharmacokinetics integrated phase I-II design to optimize dose-schedule regimes.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae034.
2
Shrinkage priors for isotonic probability vectors and binary data modeling, with applications to dose-response modeling.
Pharm Stat. 2024 Jul-Aug;23(4):540-556. doi: 10.1002/pst.2372. Epub 2024 Feb 23.
3
Optimizing dose-schedule regimens with bayesian adaptive designs: opportunities and challenges.
Front Pharmacol. 2023 Nov 23;14:1261312. doi: 10.3389/fphar.2023.1261312. eCollection 2023.
4
A clinical phase I dose-finding design with adaptive shrinking boundaries for drug combination trials.
BMC Med Res Methodol. 2023 Mar 2;23(1):57. doi: 10.1186/s12874-023-01867-y.
5
Bayesian dose regimen assessment in early phase oncology incorporating pharmacokinetics and pharmacodynamics.
Biometrics. 2022 Mar;78(1):300-312. doi: 10.1111/biom.13433. Epub 2021 Feb 18.
6
Designs for phase I trials in ordered groups.
Stat Med. 2017 Jan 30;36(2):254-265. doi: 10.1002/sim.7133. Epub 2016 Sep 14.
7
A dose-schedule finding design for phase I-II clinical trials.
J R Stat Soc Ser C Appl Stat. 2016 Feb;65(2):259-272. doi: 10.1111/rssc.12113. Epub 2016 Aug 10.
8
Bayesian Dose-Finding in Two Treatment Cycles Based on the Joint Utility of Efficacy and Toxicity.
J Am Stat Assoc. 2015 Jun 1;110(510):711-722. doi: 10.1080/01621459.2014.926815.
9
Sample sizes in dosage investigational clinical trials: a systematic evaluation.
Drug Des Devel Ther. 2015 Jan 7;9:305-12. doi: 10.2147/DDDT.S76135. eCollection 2015.
10
Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
Stat Med. 2015 Feb 28;34(5):859-75. doi: 10.1002/sim.6376. Epub 2014 Nov 21.

本文引用的文献

1
Simultaneously optimizing dose and schedule of a new cytotoxic agent.
Clin Trials. 2007;4(2):113-24. doi: 10.1177/1740774507076934.
2
Bayesian dose-finding in phase I/II clinical trials using toxicity and efficacy odds ratios.
Biometrics. 2006 Sep;62(3):777-84. doi: 10.1111/j.1541-0420.2006.00534.x.
3
Bayesian inferences on umbrella orderings.
Biometrics. 2005 Dec;61(4):1018-26. doi: 10.1111/j.1541-0420.2005.00373.x.
5
A dynamic de-escalating dosing strategy to determine the optimal biological dose for antiangiogenic drugs.
Clin Cancer Res. 2005 Nov 1;11(21):7589-92. doi: 10.1158/1078-0432.CCR-05-1387.
6
Bivariate isotonic design for dose-finding with ordered groups.
Stat Med. 2006 Jun 30;25(12):2018-26. doi: 10.1002/sim.2312.
7
A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial.
Biometrics. 2005 Jun;61(2):343-54. doi: 10.1111/j.1541-0420.2005.00314.x.
8
Determining a maximum-tolerated schedule of a cytotoxic agent.
Biometrics. 2005 Jun;61(2):335-43. doi: 10.1111/j.1541-0420.2005.00312.x.
9
Dose-finding based on efficacy-toxicity trade-offs.
Biometrics. 2004 Sep;60(3):684-93. doi: 10.1111/j.0006-341X.2004.00218.x.
10
Designs for single- or multiple-agent phase I trials.
Biometrics. 2004 Sep;60(3):661-9. doi: 10.1111/j.0006-341X.2004.00215.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验