Suppr超能文献

侵蚀性离子对生物医用镁合金在生理环境中降解行为的影响。

Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.

作者信息

Xin Yunchang, Huo Kaifu, Tao Hu, Tang Guoyi, Chu Paul K

机构信息

Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

出版信息

Acta Biomater. 2008 Nov;4(6):2008-15. doi: 10.1016/j.actbio.2008.05.014. Epub 2008 Jun 11.

Abstract

Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutual influence of these ions on the degradation behavior of Mg are revealed. Our results demonstrate that chloride ions can induce porous pitting corrosion. In the presence of phosphates, the corrosion rate decreases and the formation of pitting corrosion is significantly delayed due to precipitation of magnesium phosphate. Hydrogen carbonate ions are observed to stimulate the corrosion of magnesium alloy during the early immersion stage but they can also induce rapid passivation on the surface. This surface passivation behavior mainly results from the fast precipitation of magnesium carbonate in the corrosion product layer that can subsequently inhibit pitting corrosion completely. Sulfate ions are also found to stimulate magnesium dissolution. These results improve our understanding on the degradation mechanism of surgical magnesium in the physiological environment.

摘要

采用了各种电化学方法,包括动电位极化、开路电位演变和电化学阻抗谱(EIS),来研究生物医学镁合金在生理环境中受侵蚀性离子(如氯离子、磷酸根离子、碳酸根离子和硫酸根离子)影响下的降解行为。揭示了这些离子对镁降解行为的协同效应和相互影响。我们的结果表明,氯离子可诱发多孔点蚀。在有磷酸盐存在的情况下,由于磷酸镁沉淀,腐蚀速率降低,点蚀的形成显著延迟。观察到碳酸氢根离子在早期浸泡阶段会刺激镁合金的腐蚀,但它们也能在表面诱导快速钝化。这种表面钝化行为主要是由于腐蚀产物层中碳酸镁的快速沉淀,随后可完全抑制点蚀。还发现硫酸根离子会刺激镁的溶解。这些结果增进了我们对手术用镁在生理环境中降解机制的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验