Suppr超能文献

复发标记点过程数据的边际标记回归分析

Marginal mark regression analysis of recurrent marked point process data.

作者信息

French Benjamin, Heagerty Patrick J

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington 98195-7232, USA.

出版信息

Biometrics. 2009 Jun;65(2):415-22. doi: 10.1111/j.1541-0420.2008.01076.x.

Abstract

Longitudinal studies typically collect information on the timing of key clinical events and on specific characteristics that describe those events. Random variables that measure qualitative or quantitative aspects associated with the occurrence of an event are known as marks. Recurrent marked point process data consist of possibly recurrent events, with the mark (and possibly exposure) measured if and only if an event occurs. Analysis choices depend on which aspect of the data is of primary scientific interest. First, factors that influence the occurrence or timing of the event may be characterized using recurrent event analysis methods. Second, if there is more than one event per subject, then the association between exposure and the mark may be quantified using repeated measures regression methods. We detail assumptions required of any time-dependent exposure process and the event time process to ensure that linear or generalized linear mixed models and generalized estimating equations provide valid estimates. We provide theoretical and empirical evidence that if these conditions are not satisfied, then an independence estimating equation should be used for consistent estimation of association. We conclude with the recommendation that analysts carefully explore both the exposure and event time processes prior to implementing a repeated measures analysis of recurrent marked point process data.

摘要

纵向研究通常收集关键临床事件的发生时间以及描述这些事件的特定特征的信息。用于衡量与事件发生相关的定性或定量方面的随机变量被称为标记。复发标记点过程数据由可能复发的事件组成,且仅当事件发生时才对标记(以及可能的暴露情况)进行测量。分析方法的选择取决于数据中哪个方面是主要的科学研究兴趣点。首先,可以使用复发事件分析方法来刻画影响事件发生或时间的因素。其次,如果每个受试者有多个事件,那么可以使用重复测量回归方法来量化暴露与标记之间的关联。我们详细阐述了任何随时间变化的暴露过程和事件时间过程所需的假设,以确保线性或广义线性混合模型以及广义估计方程能提供有效的估计。我们提供了理论和实证证据,表明如果这些条件不满足,那么应使用独立性估计方程来进行关联的一致估计。我们最后建议分析师在对复发标记点过程数据进行重复测量分析之前,仔细探究暴露和事件时间过程。

相似文献

1
Marginal mark regression analysis of recurrent marked point process data.
Biometrics. 2009 Jun;65(2):415-22. doi: 10.1111/j.1541-0420.2008.01076.x.
2
Partly functional temporal process regression with semiparametric profile estimating functions.
Biometrics. 2009 Jun;65(2):431-40. doi: 10.1111/j.1541-0420.2008.01071.x. Epub 2008 May 10.
3
Marginal hazards regression for retrospective studies within cohort with possibly correlated failure time data.
Biometrics. 2009 Jun;65(2):405-14. doi: 10.1111/j.1541-0420.2008.01077.x. Epub 2008 May 19.
4
Cluster detection based on spatial associations and iterated residuals in generalized linear mixed models.
Biometrics. 2009 Jun;65(2):353-60. doi: 10.1111/j.1541-0420.2008.01069.x. Epub 2008 May 11.
5
Inference for clustered inhomogeneous spatial point processes.
Biometrics. 2009 Jun;65(2):423-30. doi: 10.1111/j.1541-0420.2008.01070.x. Epub 2008 May 18.
6
Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response.
Biometrics. 2009 Jun;65(2):361-8. doi: 10.1111/j.1541-0420.2008.01103.x.
7
Joint modeling and analysis of longitudinal data with informative observation times.
Biometrics. 2009 Jun;65(2):377-84. doi: 10.1111/j.1541-0420.2008.01104.x.
8
Mixed-effect hybrid models for longitudinal data with nonignorable dropout.
Biometrics. 2009 Jun;65(2):478-86. doi: 10.1111/j.1541-0420.2008.01102.x.
9
Clustering in the presence of scatter.
Biometrics. 2009 Jun;65(2):341-52. doi: 10.1111/j.1541-0420.2008.01064.x. Epub 2008 May 30.
10
Regularized estimation for the accelerated failure time model.
Biometrics. 2009 Jun;65(2):394-404. doi: 10.1111/j.1541-0420.2008.01074.x.

引用本文的文献

2
A parametric model to jointly characterize rate, duration, and severity of exacerbations in episodic diseases.
BMC Med Inform Decis Mak. 2023 Jan 12;23(1):6. doi: 10.1186/s12911-022-02080-5.
3
Association of Parental Mental Illness With Child Injury Occurrence, Hospitalization, and Death During Early Childhood.
JAMA Pediatr. 2020 Aug 1;174(8):e201749. doi: 10.1001/jamapediatrics.2020.1749. Epub 2020 Aug 3.
4
Design and analysis of nested case-control studies for recurrent events subject to a terminal event.
Stat Med. 2019 Sep 30;38(22):4348-4362. doi: 10.1002/sim.8302. Epub 2019 Jul 9.
6
A general framework for estimating volume-outcome associations from longitudinal data.
Stat Med. 2012 Feb 20;31(4):366-82. doi: 10.1002/sim.4410. Epub 2011 Nov 15.

本文引用的文献

1
Regression analysis of panel count data with dependent observation times.
Biometrics. 2007 Dec;63(4):1053-9. doi: 10.1111/j.1541-0420.2007.00808.x.
3
Analysis of repeated pregnancy outcomes.
Stat Methods Med Res. 2006 Apr;15(2):103-26. doi: 10.1191/0962280206sm434oa.
4
Tests for independence between marks and points of a marked point process.
Biometrics. 2006 Mar;62(1):126-34. doi: 10.1111/j.1541-0420.2005.00395.x.
5
Estimation in regression models for longitudinal binary data with outcome-dependent follow-up.
Biostatistics. 2006 Jul;7(3):469-85. doi: 10.1093/biostatistics/kxj019. Epub 2006 Jan 20.
7
Testing separability in spatial-temporal marked point processes.
Biometrics. 2004 Jun;60(2):471-81. doi: 10.1111/j.0006-341X.2004.00192.x.
8
The Collaborative Perinatal Project: lessons and legacy.
Ann Epidemiol. 2003 May;13(5):303-11. doi: 10.1016/s1047-2797(02)00479-9.
9
Parameter estimation in longitudinal studies with outcome-dependent follow-up.
Biometrics. 2002 Sep;58(3):621-30. doi: 10.1111/j.0006-341x.2002.00621.x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验