Suppr超能文献

具有信息性观测时间的纵向数据的联合建模与分析。

Joint modeling and analysis of longitudinal data with informative observation times.

作者信息

Liang Yu, Lu Wenbin, Ying Zhiliang

机构信息

SAS Institute Inc, Cary, North Carolina 27513, USA.

出版信息

Biometrics. 2009 Jun;65(2):377-84. doi: 10.1111/j.1541-0420.2008.01104.x.

Abstract

In analysis of longitudinal data, it is often assumed that observation times are predetermined and are the same across study subjects. Such an assumption, however, is often violated in practice. As a result, the observation times may be highly irregular. It is well known that if the sampling scheme is correlated with the outcome values, the usual statistical analysis may yield bias. In this article, we propose joint modeling and analysis of longitudinal data with possibly informative observation times via latent variables. A two-step estimation procedure is developed for parameter estimation. We show that the resulting estimators are consistent and asymptotically normal, and that the asymptotic variance can be consistently estimated using the bootstrap method. Simulation studies and a real data analysis demonstrate that our method performs well with realistic sample sizes and is appropriate for practical use.

摘要

在纵向数据分析中,通常假定观察时间是预先确定的,并且在所有研究对象中是相同的。然而,这种假定在实际中常常被违背。因此,观察时间可能极不规则。众所周知,如果抽样方案与结果值相关,通常的统计分析可能会产生偏差。在本文中,我们提出通过潜在变量对具有可能信息丰富的观察时间的纵向数据进行联合建模和分析。我们开发了一种两步估计程序用于参数估计。我们表明,所得估计量是一致的且渐近正态,并且渐近方差可以使用自助法一致地估计。模拟研究和实际数据分析表明,我们的方法在实际样本量下表现良好,适用于实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验