Suppr超能文献

保守的RNA二级结构促进可变剪接。

Conserved RNA secondary structures promote alternative splicing.

作者信息

Shepard Peter J, Hertel Klemens J

机构信息

Department of Microbiology and Molecular Genetics, Institute for Genomics and Bioinformatics, University of California at Irvine, Irvine, California 92697-4025, USA.

出版信息

RNA. 2008 Aug;14(8):1463-9. doi: 10.1261/rna.1069408. Epub 2008 Jun 25.

Abstract

Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site strength, splicing regulators, the exon/intron architecture, and the process of pre-mRNA synthesis itself. RNA secondary structures have also been proposed to influence alternative splicing as stable RNA secondary structures that mask splice sites are expected to interfere with splice-site recognition. Using structural and functional conservation, we identified RNA structure elements within the human genome that associate with alternative splice-site selection. Their frequent involvement with alternative splicing demonstrates that RNA structure formation is an important mechanism regulating gene expression and disease.

摘要

前体信使核糖核酸(pre-mRNA)剪接由剪接体执行,剪接体识别外显子并去除居间的内含子。高等真核生物中的可变剪接导致从基因转录本产生多种蛋白质异构体。观察到的广泛可变剪接意味着剪接体在识别给定前体信使核糖核酸中的外显子方面具有灵活性。为了实现这种灵活性,高等真核生物中的剪接位点选择已进化为依赖于多个参数,如剪接位点强度、剪接调节因子、外显子/内含子结构以及前体信使核糖核酸合成过程本身。也有人提出RNA二级结构会影响可变剪接,因为掩盖剪接位点的稳定RNA二级结构预计会干扰剪接位点识别。利用结构和功能保守性,我们在人类基因组中鉴定出与可变剪接位点选择相关的RNA结构元件。它们频繁参与可变剪接表明RNA结构形成是调节基因表达和疾病的重要机制。

相似文献

1
Conserved RNA secondary structures promote alternative splicing.
RNA. 2008 Aug;14(8):1463-9. doi: 10.1261/rna.1069408. Epub 2008 Jun 25.
2
Combinatorial control of exon recognition.
J Biol Chem. 2008 Jan 18;283(3):1211-5. doi: 10.1074/jbc.R700035200. Epub 2007 Nov 16.
3
Splice site proximity influences alternative exon definition.
RNA Biol. 2022 Jan;19(1):829-840. doi: 10.1080/15476286.2022.2089478.
4
Conserved RNA cis-elements regulate alternative splicing of Lepidopteran doublesex.
Insect Biochem Mol Biol. 2014 Jan;44:1-11. doi: 10.1016/j.ibmb.2013.10.009. Epub 2013 Nov 12.
5
The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16176-81. doi: 10.1073/pnas.0508489102. Epub 2005 Oct 31.
6
Efficient internal exon recognition depends on near equal contributions from the 3' and 5' splice sites.
Nucleic Acids Res. 2011 Nov 1;39(20):8928-37. doi: 10.1093/nar/gkr481. Epub 2011 Jul 27.
7
Transposon clusters as substrates for aberrant splice-site activation.
RNA Biol. 2021 Mar;18(3):354-367. doi: 10.1080/15476286.2020.1805909. Epub 2020 Sep 23.
8

引用本文的文献

1
Inverted Alu repeats in loop-out exon skipping across hominoid evolution.
bioRxiv. 2025 Mar 10:2025.03.07.642063. doi: 10.1101/2025.03.07.642063.
2
Identification of a new spliceogenic variant causing severe primary coenzyme Q deficiency.
Mol Genet Metab Rep. 2024 Dec 14;42:101176. doi: 10.1016/j.ymgmr.2024.101176. eCollection 2025 Mar.
3
From benign to pathogenic variants and vice versa: pyrimidine transitions at position -3 of TAG and CAG 3' splice sites.
J Hum Genet. 2025 Mar;70(3):125-133. doi: 10.1038/s10038-024-01308-8. Epub 2024 Dec 5.
4
DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via mA reader YTHDF1.
Nat Commun. 2024 Nov 15;15(1):9890. doi: 10.1038/s41467-024-54000-y.
5
RNA structure in alternative splicing regulation: from mechanism to therapy.
Acta Biochim Biophys Sin (Shanghai). 2024 Jul 22;57(1):3-21. doi: 10.3724/abbs.2024119.
6
An intronic RNA element modulates Factor VIII exon-16 splicing.
Nucleic Acids Res. 2024 Jan 11;52(1):300-315. doi: 10.1093/nar/gkad1034.
8
Alternative Splicing in Human Biology and Disease.
Methods Mol Biol. 2022;2537:1-19. doi: 10.1007/978-1-0716-2521-7_1.
9
Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions.
Front Plant Sci. 2022 Jun 23;13:911277. doi: 10.3389/fpls.2022.911277. eCollection 2022.
10
mRNAs sequestered in stress granules recover nearly completely for translation.
RNA Biol. 2022 Jan;19(1):877-884. doi: 10.1080/15476286.2022.2094137.

本文引用的文献

1
The UCSC Genome Browser Database: 2008 update.
Nucleic Acids Res. 2008 Jan;36(Database issue):D773-9. doi: 10.1093/nar/gkm966. Epub 2007 Dec 17.
2
Combinatorial control of exon recognition.
J Biol Chem. 2008 Jan 18;283(3):1211-5. doi: 10.1074/jbc.R700035200. Epub 2007 Nov 16.
3
Pre-mRNA secondary structures influence exon recognition.
PLoS Genet. 2007 Nov;3(11):e204. doi: 10.1371/journal.pgen.0030204.
4
Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes.
Nucleic Acids Res. 2007;35(2):371-89. doi: 10.1093/nar/gkl1050. Epub 2006 Dec 14.
5
The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species.
Nucleic Acids Res. 2007 Jan;35(Database issue):D93-8. doi: 10.1093/nar/gkl884. Epub 2006 Nov 15.
6
Interpreting experimental results using gene ontologies.
Methods Enzymol. 2006;411:340-52. doi: 10.1016/S0076-6879(06)11018-6.
7
Identification and classification of conserved RNA secondary structures in the human genome.
PLoS Comput Biol. 2006 Apr;2(4):e33. doi: 10.1371/journal.pcbi.0020033. Epub 2006 Apr 21.
8
The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16176-81. doi: 10.1073/pnas.0508489102. Epub 2005 Oct 31.
10
Promoter usage and alternative splicing.
Curr Opin Cell Biol. 2005 Jun;17(3):262-8. doi: 10.1016/j.ceb.2005.04.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验