Suppr超能文献

关于麦克斯韦-斯蒂芬方法对扩散的研究:一维系统瞬态情况下的一般解析。

On the Maxwell-Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems.

机构信息

CRS4, Center for Advanced Studies, Research and Development in Sardinia, Parco Scientifico e Tecnologico, Polaris, Edificio 1, I-09010 Pula, Italy.

出版信息

J Phys Chem B. 2010 Jan 14;114(1):151-64. doi: 10.1021/jp900760c.

Abstract

The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients.

摘要

多组分系统中的扩散过程可以通过广义 Maxwell-Stefan 方程以一般形式来描述。这种表述能够描述不同系统中的扩散过程,例如,体相扩散(在气体、液体和固体相中)和微孔材料中的扩散(膜、沸石、纳米管等)。Maxwell-Stefan 方程可以通过解析(仅在特殊情况下)或数值方法来求解。之前已经提出了不同的数值策略,但通常限制了扩散物种的数量,除了少数例外,在体相扩散中限制为三个,在微孔系统中限制为两个,除非考虑到 Maxwell-Stefan 方程的简化。在文献中,人们已经投入了大量精力来推导出类似于 Fick 的扩散矩阵元素的解析表达式,因此可以对具有 n x n 维数的方阵进行符号反转(n 是独立组分的数量)。对于 n = 2 和 n = 3,这个步骤很容易完成,但对于具有大量组分的问题,这个步骤会变得非常复杂。本文解决了在瞬态条件下,通过避免定义类似于 Fick 的扩散矩阵元素的解析表达式,对具有任意数量组分的一维系统的 Maxwell-Stefan 方程进行数值求解的问题。为此,在一个计算代码中实现了两种方法;第一种是简单的有限差分 Crank-Nicolson 时间二阶精度方法,其中报告了完整的数学推导和相关的最终方程。第二种方法基于更精确的向后差分公式(BDF)或 Gear 方法(Shampine,L. F.;Gear,C. W. SIAM Rev. 1979, 21, 1.),如 Livermore 求解器中用于常微分方程的 LSODE(Hindmarsh,A. C. Serial Fortran Solvers for ODE Initial Value Problems,Technical Report;https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).)。这两种方法都已应用于一系列特定问题,例如丙酮和甲醇在静止空气中的体相扩散、微孔材料中两种组分的吸收以及模型系统中微孔膜的渗透,目的是验证方法并为这些系统的特殊行为提供新的认识。该方法通过与不同的已发表结果和特定系统中稳态浓度分布或通量的解析表达式进行比较来验证。还测试了处理任意数量组分的可能性(主要限制是计算能力),并报告了在模型系统中通过膜渗透五组分混合物的结果。值得注意的是,本文中报告的算法也可以应用于具有浓度依赖扩散系数的扩散问题的 Fick 表述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验