Department of Neurology, Medical Physics, University Medical Center Freiburg, D-79106 Freiburg, Germany.
Neuroimage. 2010 Feb 15;49(4):3187-97. doi: 10.1016/j.neuroimage.2009.11.009. Epub 2009 Nov 12.
Cognitive functions are organized in distributed, overlapping, and interacting brain networks. Investigation of those large-scale brain networks is a major task in neuroimaging research. Here, we introduce a novel combination of functional and anatomical connectivity to study the network topology subserving a cognitive function of interest. (i) In a given network, direct interactions between network nodes are identified by analyzing functional MRI time series with the multivariate method of directed partial correlation (dPC). This method provides important improvements over shortcomings that are typical for ordinary (partial) correlation techniques. (ii) For directly interacting pairs of nodes, a region-to-region probabilistic fiber tracking on diffusion tensor imaging data is performed to identify the most probable anatomical white matter fiber tracts mediating the functional interactions. This combined approach is applied to the language domain to investigate the network topology of two levels of auditory comprehension: lower-level speech perception (i.e., phonological processing) and higher-level speech recognition (i.e., semantic processing). For both processing levels, dPC analyses revealed the functional network topology and identified central network nodes by the number of direct interactions with other nodes. Tractography showed that these interactions are mediated by distinct ventral (via the extreme capsule) and dorsal (via the arcuate/superior longitudinal fascicle fiber system) long- and short-distance association tracts as well as commissural fibers. Our findings demonstrate how both processing routines are segregated in the brain on a large-scale network level. Combining dPC with probabilistic tractography is a promising approach to unveil how cognitive functions emerge through interaction of functionally interacting and anatomically interconnected brain regions.
认知功能是在分布式、重叠和相互作用的大脑网络中组织起来的。对这些大规模脑网络的研究是神经影像学研究的主要任务。在这里,我们介绍了一种新的功能连接和解剖连接的组合,以研究与感兴趣的认知功能相关的网络拓扑结构。(i) 在给定的网络中,通过分析功能磁共振成像时间序列与多元定向部分相关(dPC)方法,确定网络节点之间的直接相互作用。这种方法提供了对普通(部分)相关技术的典型缺点的重要改进。(ii) 对于直接相互作用的节点对,在弥散张量成像数据上进行区域间概率纤维追踪,以确定介导功能相互作用的最可能的解剖白质纤维束。这种组合方法应用于语言领域,研究听觉理解两个层次的网络拓扑结构:较低层次的言语感知(即语音处理)和较高层次的言语识别(即语义处理)。对于这两种处理水平,dPC 分析揭示了功能网络拓扑结构,并通过与其他节点的直接相互作用数量确定了中心网络节点。追踪显示,这些相互作用是由不同的腹侧(通过极端胶囊)和背侧(通过弓状束/上纵束纤维系统)长距离和短距离连接束以及连合纤维介导的。我们的发现表明,这两种处理程序如何在大脑的大规模网络水平上进行分离。将 dPC 与概率追踪相结合是一种很有前途的方法,可以揭示认知功能是如何通过功能相互作用和解剖连接的大脑区域的相互作用而产生的。