Suppr超能文献

一氧化碳脱氢酶催化的CO与CO₂之间交换反应的¹³C NMR表征

13C NMR characterization of an exchange reaction between CO and CO2 catalyzed by carbon monoxide dehydrogenase.

作者信息

Seravalli Javier, Ragsdale Stephen W

机构信息

Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA.

出版信息

Biochemistry. 2008 Jul 1;47(26):6770-81. doi: 10.1021/bi8004522.

Abstract

Carbon monoxide dehydrogenase (CODH) catalyzes the reversible oxidation of CO to CO2 at a nickel-iron-sulfur cluster (the C-cluster). CO oxidation follows a ping-pong mechanism involving two-electron reduction of the C-cluster followed by electron transfer through an internal electron transfer chain to external electron acceptors. We describe 13C NMR studies demonstrating a CODH-catalyzed steady-state exchange reaction between CO and CO2 in the absence of external electron acceptors. This reaction is characterized by a CODH-dependent broadening of the 13CO NMR resonance; however, the chemical shift of the 13CO resonance is unchanged, indicating that the broadening is in the slow exchange limit of the NMR experiment. The 13CO line broadening occurs with a rate constant (1080 s-1 at 20 degrees C) that is approximately equal to that of CO oxidation. It is concluded that the observed exchange reaction is between 13CO and CODH-bound 13CO2 because 13CO line broadening is pH-independent (unlike steady-state CO oxidation), because it requires a functional C-cluster (but not a functional B-cluster) and because the 13CO2 line width does not broaden. Furthermore, a steady-state isotopic exchange reaction between 12CO and 13CO2 in solution was shown to occur at the same rate as that of CO2 reduction, which is approximately 750-fold slower than the rate of 13CO exchange broadening. The interaction between CODH and the inhibitor cyanide (CN-) was also probed by 13C NMR. A functional C-cluster is not required for 13CN- broadening (unlike for 13CO), and its exchange rate constant is 30-fold faster than that for 13CO. The combined results indicate that the 13CO exchange includes migration of CO to the C-cluster, and CO oxidation to CO2, but not release of CO2 or protons into the solvent. They also provide strong evidence of a CO2 binding site and of an internal proton transfer network in CODH. 13CN- exchange appears to monitor only movement of CN- between solution and its binding to and release from CODH.

摘要

一氧化碳脱氢酶(CODH)在镍铁硫簇(C簇)处催化CO可逆氧化为CO₂。CO氧化遵循乒乓机制,包括C簇的双电子还原,随后电子通过内部电子传递链传递给外部电子受体。我们描述了¹³C NMR研究,证明在没有外部电子受体的情况下,CODH催化CO和CO₂之间的稳态交换反应。该反应的特征是¹³CO NMR共振在CODH作用下变宽;然而,¹³CO共振的化学位移不变,表明这种变宽处于NMR实验的慢交换极限。¹³CO谱线变宽的速率常数(20℃时为1080 s⁻¹)与CO氧化的速率常数大致相等。得出的结论是,观察到的交换反应发生在¹³CO与CODH结合的¹³CO₂之间,因为¹³CO谱线变宽与pH无关(与稳态CO氧化不同),因为它需要一个功能性的C簇(但不需要功能性的B簇),并且¹³CO₂谱线宽度不变宽。此外,溶液中¹²CO和¹³CO₂之间的稳态同位素交换反应显示以与CO₂还原相同的速率发生,这比¹³CO交换变宽的速率慢约750倍。¹³C NMR还探测了CODH与抑制剂氰化物(CN⁻)之间的相互作用。¹³CN⁻变宽不需要功能性的C簇(与¹³CO不同),其交换速率常数比¹³CO的快30倍。综合结果表明,¹³CO交换包括CO向C簇的迁移以及CO氧化为CO₂,但不包括CO₂或质子释放到溶剂中。它们还为CODH中的CO₂结合位点和内部质子转移网络提供了有力证据。¹³CN⁻交换似乎仅监测CN⁻在溶液之间的移动及其与CODH的结合和释放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21cb/2664834/8eb3fc766bd3/bi-2008-004522_0001.jpg

相似文献

7
Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
mBio. 2016 May 24;7(3):e00427-16. doi: 10.1128/mBio.00427-16.
9
Reversible Electron Transfer and Substrate Binding Support [NiFeS] Ferredoxin as a Protein-Based Model for [NiFe] Carbon Monoxide Dehydrogenase.
Inorg Chem. 2021 Sep 20;60(18):13869-13875. doi: 10.1021/acs.inorgchem.1c01323. Epub 2021 Sep 7.

引用本文的文献

1
Identifying a key spot for electron mediator-interaction to tailor CO dehydrogenase's affinity.
Nat Commun. 2024 Mar 28;15(1):2732. doi: 10.1038/s41467-024-46909-1.
4
Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis.
Chem Rev. 2023 May 10;123(9):5347-5420. doi: 10.1021/acs.chemrev.2c00879. Epub 2023 Apr 12.
5
Residues surrounding the active centre of carbon monoxide dehydrogenase are key in converting [Formula: see text] to CO.
J Biol Inorg Chem. 2021 Aug;26(5):617-624. doi: 10.1007/s00775-021-01878-4. Epub 2021 Jul 13.
6
Catalytic bias in oxidation-reduction catalysis.
Chem Commun (Camb). 2021 Jan 18;57(6):713-720. doi: 10.1039/d0cc07062a. Epub 2020 Dec 24.
8
The good, the neutral, and the positive: buffer identity impacts CO reduction activity by nickel(ii) cyclam.
Dalton Trans. 2019 Nov 14;48(42):15810-15821. doi: 10.1039/c9dt03114f. Epub 2019 Sep 27.
9
Molecular Insights into Carbon Dioxide Sorption in Hydrazone-Based Covalent Organic Frameworks with Tertiary Amine Moieties.
Chem Mater. 2019 Mar 26;31(6):1946-1955. doi: 10.1021/acs.chemmater.8b04643. Epub 2019 Feb 13.

本文引用的文献

1
Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase.
Science. 2007 Nov 30;318(5855):1461-4. doi: 10.1126/science.1148481.
5
CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex.
Biochim Biophys Acta. 2006 Dec;1757(12):1582-91. doi: 10.1016/j.bbabio.2006.10.003. Epub 2006 Oct 14.
6
How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17088-93. doi: 10.1073/pnas.0603978103. Epub 2006 Nov 6.
7
Metals and their scaffolds to promote difficult enzymatic reactions.
Chem Rev. 2006 Aug;106(8):3317-37. doi: 10.1021/cr0503153.
8
Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901.
PLoS Genet. 2005 Nov;1(5):e65. doi: 10.1371/journal.pgen.0010065. Epub 2005 Nov 25.
10
Life with carbon monoxide.
Crit Rev Biochem Mol Biol. 2004 May-Jun;39(3):165-95. doi: 10.1080/10409230490496577.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验