Pattanaik A, Gowda D C, Urry D W
Laboratory of Molecular Biophysics, School of Medicine, University of Alabama, Birmingham 35294-0019.
Biochem Biophys Res Commun. 1991 Jul 31;178(2):539-45. doi: 10.1016/0006-291x(91)90141-s.
Poly[15(IPGVG),(RGYSLG)], where RGYSLG is a protein kinase site, was synthesized. On raising the temperature of a 5 mg/ml solution, this polypeptide undergoes an inverse temperature transition at 18 degrees C in which it folds into a contracted state by optimizing intramolecular hydrophobic interactions. Averaging the data of five experiments, phosphorylation by means of a 3':5' cyclic AMP dependent protein kinase to the extent of one phosphate in 360 residues raises the temperature of the folding transition to 32 degrees C. The shift is completely reversed on dephosphorylation by alkaline phosphatase. Phosphorylation is hereby shown to be the most potent chemical perturbation known for shifting the temperature of an inverse temperature transition, which has been shown to be an efficient mechanism for achieving chemomechanical transduction (mechanochemical coupling).
合成了聚[15(IPGVG),(RGYSLG)],其中RGYSLG是一个蛋白激酶位点。在将5mg/ml溶液的温度升高时,这种多肽在18℃经历反向温度转变,在此过程中它通过优化分子内疏水相互作用折叠成收缩状态。对五个实验的数据进行平均,通过3':5'环磷酸腺苷依赖性蛋白激酶进行磷酸化,使360个残基中有一个磷酸化,将折叠转变温度提高到32℃。通过碱性磷酸酶去磷酸化后,这种转变完全逆转。由此表明,磷酸化是已知的用于改变反向温度转变温度的最有效的化学扰动,而反向温度转变已被证明是实现化学机械转导(机械化学偶联)的一种有效机制。