Wang Jingyu, Huang Hao, Xu Wen Zheng, Zhang Yu Ruo, Lu Bin, Xie Rui Zheng, Wang Peiyong, Yun Ni
Chemical Industry and Ecology Institute, North University of China, Taiyuan, Shanxi 030051, China.
J Hazard Mater. 2009 Mar 15;162(2-3):842-7. doi: 10.1016/j.jhazmat.2008.05.107. Epub 2008 May 28.
The ultra-fine HNS (2,2',4,4',6,6'-hexanitrostilbene) with desired properties is needed for military and civilian applications because of its reliable threshold energy to short impulse shock waves and its excellent thermal and shock stability. This paper reports on prefilming twin-fluid nozzle assisted precipitation (PTFN-P) to obtain ultra-fine HNS explosive with high specific surface area (SSA), high purity, and narrow particle size distribution. The properties of ultra-fine HNS have been confirmed by SEM, BET, HPLC, XRD, DSC and TGA-SDTA. SEM photograph revealed that the PTFN-P process offers ellipsoid crystalline morphology with particle size of 90-150 nm. The BET and Langmuir SSA of nanocrystalline HNS with purity of 99.44 wt.% were determined to be 19.28 m(2)/g and 29.26 m(2)/g, respectively. The XRD peaks of nanocrystalline HNS seemed to have similar diffraction angles as those of synthesized HNS, and the weakening of peak strength was observed apparently. DSC results of the nanocrystalline HNS showed that the exothermic decomposing at the temperature range of 323-398 degrees C. Furthermore, HNS samples were submitted to impact and small scale gap test and the results indicated that nanocrystalline HNS is less sensitive than synthesized HNS (50 microm) to impact and shock stimuli.
由于其对短脉冲冲击波具有可靠的阈值能量以及出色的热稳定性和冲击稳定性,具有所需性能的超细六硝基芪(HNS,2,2',4,4',6,6'-hexanitrostilbene)在军事和民用领域都有需求。本文报道了采用预成膜双流体喷嘴辅助沉淀法(PTFN-P)来制备具有高比表面积(SSA)、高纯度和窄粒度分布的超细HNS炸药。通过扫描电子显微镜(SEM)、比表面积分析仪(BET)、高效液相色谱(HPLC)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)和热重-差示扫描热分析联用仪(TGA-SDTA)对超细HNS的性能进行了确认。扫描电子显微镜照片显示,PTFN-P工艺制备出的是粒径为90 - 150 nm的椭球形晶体形态。纯度为99.44 wt.%的纳米晶HNS的BET比表面积和朗缪尔比表面积分别测定为19.28 m²/g和29.26 m²/g。纳米晶HNS的XRD峰与合成HNS的衍射角似乎相似,且明显观察到峰强度减弱。纳米晶HNS的DSC结果表明,其在323 - 398℃温度范围内发生放热分解。此外,对HNS样品进行了冲击和小隔板试验,结果表明纳米晶HNS对冲击和震动刺激的敏感度低于合成HNS(50微米)。