Laporte Catherine, Arbel Tal
Centre for Intelligent Machines, 3480 University Street, McGill University, Montreal, QC H3A 2A7, Canada.
IEEE Trans Med Imaging. 2008;27(7):984-94. doi: 10.1109/TMI.2008.923704.
In freehand 3-D ultrasound (US), the relative positions of US images are usually measured using a position tracking device despite its cumbersome nature. The probe trajectory can instead be estimated from image data, using registration techniques to recover in-plane motion and speckle decorrelation to recover out-of-plane transformations. The relationship between speckle decorrelation and elevational separation is typically represented by a single curve, estimated from calibration data. Distances read off such a curve are corrupted by bias and uncertainty, and only provide an absolute estimate of elevational displacement. This paper presents a probabilistic model of the relationship between correlation measurements and elevational separation. This representation captures the skewed distribution of distance estimates based on high correlations and the uncertainties attached to each measurement. Multiple redundant correlation measurements can then be integrated within a maximum likelihood estimation framework. This paper also introduces a new method based on the traveling salesman problem for resolving sign ambiguities in data sets resulting from nonmonotonic probe motion and frame intersections. Experiments with real and synthetic US data show that by combining these new methods, out-of-plane US probe motion is recovered with improved accuracy over baseline methods using a deterministic model and fewer measurements.
在徒手三维超声(US)中,尽管使用位置跟踪设备测量超声图像的相对位置较为繁琐,但通常仍会采用该方法。相反,可以从图像数据中估计探头轨迹,利用配准技术恢复平面内运动,并利用散斑去相关来恢复平面外变换。散斑去相关与仰角分离之间的关系通常由一条根据校准数据估计的单一曲线表示。从这样一条曲线上读取的距离会受到偏差和不确定性的影响,并且只能提供仰角位移的绝对估计值。本文提出了一种相关测量与仰角分离之间关系的概率模型。这种表示法捕捉了基于高相关性的距离估计的偏态分布以及每个测量所附带的不确定性。然后,可以在最大似然估计框架内整合多个冗余相关测量。本文还介绍了一种基于旅行商问题的新方法,用于解决由于探头非单调运动和帧交叉而导致的数据集中的符号模糊性问题。对真实和合成超声数据进行的实验表明,通过结合这些新方法,与使用确定性模型且测量次数较少的基线方法相比,平面外超声探头运动的恢复精度得到了提高。