Suppr超能文献

种子贝叶斯网络:从微阵列数据构建遗传网络。

Seeded Bayesian Networks: constructing genetic networks from microarray data.

作者信息

Djebbari Amira, Quackenbush John

机构信息

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

BMC Syst Biol. 2008 Jul 4;2:57. doi: 10.1186/1752-0509-2-57.

Abstract

BACKGROUND

DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes - often represented as networks - in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results.

RESULTS

Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data.

CONCLUSION

The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

摘要

背景

DNA微阵列及其他受基因组学启发的技术提供了大量数据集,这些数据集中常常包含基因间隐藏的关联模式,这些模式反映了细胞代谢和生理过程背后的复杂机制。分析大规模表达数据面临的挑战在于,在数据集往往不完美且生物噪声可能掩盖实际信号的环境中,提取有关这些过程(通常以网络形式呈现)的具有生物学意义的推断。尽管已经开发了许多技术来试图解决这些问题,但迄今为止,它们提取有意义且具有预测性的网络关系的能力仍然有限。在此,我们描述一种利用基因 - 基因相互作用的先验信息从微阵列数据中推断生物学相关通路的方法。我们的方法包括使用从文献和/或蛋白质 - 蛋白质相互作用数据中获得的初步网络作为微阵列结果贝叶斯网络分析的种子。

结果

通过对来自多项白血病研究的基因表达数据进行自展分析,我们证明了带种子的贝叶斯网络有能力识别高可信度的基因 - 基因相互作用,然后可通过与其他通路数据来源进行比较来验证这些相互作用。

结论

使用网络种子极大地提高了贝叶斯网络分析从基因表达数据中学习基因相互作用网络的能力。我们证明,使用来自生物医学文献或高通量蛋白质 - 蛋白质相互作用数据的种子,或两者结合,比标准贝叶斯网络分析有改进,使得涉及动态过程的网络能够从代表微阵列数据最常见来源的生物系统静态快照中推导出来。实现这些方法的软件已包含在广泛使用的TM4微阵列分析软件包中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eef8/2474592/1c489fd8f4a9/1752-0509-2-57-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验